(a)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(a)
Answer to Problem 7.98QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
For a given value of
For a given value of
If
Here,
(b)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(b)
Answer to Problem 7.98QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Each of
(c)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(c)
Answer to Problem 7.98QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Each of 3d orbitals occupies two electrons. Hence, 10 electrons are resulted. Therefore, the maximum number of electrons in an atom that can have the quantum number
(d)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(d)
Answer to Problem 7.98QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Here,
(e)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
(e)
Answer to Problem 7.98QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
4f-orbital occupies two electrons. Therefore, the maximum number of electrons in an atom that can have the quantum number
Want to see more full solutions like this?
Chapter 7 Solutions
CHEMISTRY (LL) W/CNCT >BI<
- Identify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forwardIdentify the Functional Groups (FG) in the following molecules. Classify C atoms as tertiary, 30, or quaternary 40. Identify secondary 20 and tertiary, 30 hydrogen atoms. Please provide steps to undertand each labeling.arrow_forward
- A certain chemical reaction releases 24.7 kJ/g of heat for each gram of reactant consumed. How can you calculate what mass of reactant will produce 1460. J of heat? Set the math up. But don't do any of it. Just leave your answer as a math expression. Also, be sure your answer includes all the correct unit symbols. mass M 0.0 x μ 00 1 Garrow_forwardPlease don't used hand raiting and don't used Ai solutionarrow_forwardDon't used Ai solutionarrow_forward
- Don't used hand raitingarrow_forwarda) Propose a method to synthesize the following product. More than one step reaction is required. (10 marks)arrow_forwardthe vibrational frequency of I2 is 214.5 cm-1. (i) Using the harmonic oscillator model, evaluate the vibrational partition function and the mean vibrational energy of I2 at 1000K. (ii) What is the characteristic vibrational temperature of I2? (iii) At 1000K, assuming high-temperature approximation, evaluate the vibrational partition function and the mean vibrational energy of I2. (iv) Comparing (i) and (iii), is the high-temperature approximation good for I2 at 1000K?arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardconsider a weak monoprotic acid that is 32 deprotonated at ph 4.00 what is the pka of the weak acidarrow_forwardHow much energy does it take to raise the temperature of 1.0 mol H2O(g) from 100 °C to 200 °C at constant volume? Consider only translational and rotational contributions to the heat capacity. Hint: Use high-temp limit for non-linear molecule when calculating rotational contribution.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning