Concept explainers
(a)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.

Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
(b)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.

Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
(c)
Interpretation:
The osmotic pressure at
Concept introduction:
Osmotic pressure is defined as the minimum pressure applied on the solution to stop the flow of solvent molecules through the semi-permeable membrane.
Osmotic pressure is the colligative property and depends on the number of atoms of particle of the substance present in material.

Answer to Problem 7.85E
The osmotic pressure of the given solution is
Explanation of Solution
Given temperature
The mole fraction of
Where,
•
Substitute the values of number of moles of each component in the above formula.
The mole fraction of component
On complete dissociation of
The osmotic pressure of the solution is given as,
Where,
•
•
•
Substitute the value of
The osmotic pressure of the given solution is
The osmotic pressure of the given solution is
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Physical Chemistry, 2nd + Student Solutions Manual
- Can you please help me with this problem and explain it step by step? I'm so confused about itarrow_forward2. Identify the reagents you would need to achieve the following. You may need to consider using a protecting group. HO 1. 2. 3. 4. 5. OH Br HOarrow_forwardBeF2 exists as a linear molecule. Which kind of hybrid orbitals does Be use in this compound? Use Orbital Diagrams to show how the orbitals are formed. (6)arrow_forward
- Please answer the questions and provide detailed explanations as well as a drawing to show the signals in the molecule.arrow_forwardPropose an efficient synthesis for the following transformation: EN The transformation above can be performed with some reagent or combination of the reagents listed below. Give the necessary reagents in the correct order, as a string of letters (without spaces or punctuation, such as "EBF"). If there is more than one correct solution, provide just one answer. A. t-BuOK B. Na2Cr2O7, H2SO4, H2O C. NBS, heat F. NaCN D. MeOH E. NaOH G. MeONa H. H2O I. 1) O3; 2) DMSarrow_forwardStereochemistry Identifying the enantiomer of a simple organic molecule 1/5 Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of t above box under the table. Br ま HO H 0 Molecule 1 Molecule 2 Molecule 3 OH H Br H H" Br OH Br Molecule 4 Br H OH + + OH Molecule 5 Br H OH none of the above Molecule 6 Br H... OHarrow_forward
- Please answer the questions and provide detailed explanations.arrow_forwardQuestion 16 0/1 pts Choose the correct option for the following cycloaddition reaction. C CF3 CF3 CF3 CF3 The reaction is suprafacial/surafacial and forbidden The reaction is antarafacial/antarafacial and forbidden The reaction is antarafacial/antarafacial and allowed The reaction is suprafacial/surafacial and allowedarrow_forward1. Give the structures of the products obtained when the following are heated. Include stereochemistry where relevant. A NO2 + NO2 B + C N=C CEN + { 2. Which compounds would you heat together in order to synthesize the following?arrow_forward
- Explain how myo-inositol is different from D-chiro-inositol. use scholarly sources and please hyperlink.arrow_forwardWhat is the molarisuty of a 0.396 m glucose solution if its density is 1.16 g/mL? MM glucose 180.2 /mol.arrow_forwardProvide the proper IUPAC or common name for the following compound. Dashes, commas, and spaces must be used correctly. Br ......Im OHarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





