
Concept explainers
(a)
Interpretation:
The highest frequency and minimum wavelength of radiation emitted when the electron makes a transition from
Concept introduction:
The difference between the energies of two energy levels is the amount of energy in a photon emitted or absorbed when an electron makes a transition. The energy of a photon emitted or absorbed by an electron is,
Here,
(a)

Answer to Problem 7.81P
The highest frequency of radiation emitted when the electron makes a transition from
Explanation of Solution
The energies of the energy levels 3 and 1 are
The formula to calculate the difference in the energies of energy level 1 and 2 is,
Substitute
Substitute
Rearrange the above equation to calculate the value for
The equation to relate the frequency and wavelength of radiation is as follows:
Substitute
Rearrange the above equation to calculate the value of
The highest frequency of radiation emitted when the electron makes a transition from
(b)
Interpretation:
The ionization energy of the atom in its ground state in
Concept introduction:
Ionization energy is defined as the amount of energy required to remove an electron from an isolated gaseous atom. The energy required to remove an electron from an atom depends on the position of the electron in the atom. The closer the electron is to the nucleus in the atom, the harder it is to pull it out of the atom. As the distance of an electron from the nucleus increases, the magnitude of the forces of attraction between the electron and the nucleus decreases. Thus it becomes easier to remove it from the atom.
(b)

Answer to Problem 7.81P
The ionization energy of the atom in its ground state in
Explanation of Solution
The total number of atoms in one mole of a compound is
The ionization energy required to remove an electron from the ground state is the same as the energy of the state.
Thus for one atom, the ionization energy for the ground state is
For 1 mole
The ionization energy of the atom in its ground state in
(c)
Interpretation:
The shortest wavelength of radiation that could be absorbed by the electron in the
Concept introduction:
Electromagnetic waves are radiations that are formed by oscillating electric and magnetic fields. The electric and magnetic field components of an electromagnetic wave are perpendicular to each other.
The difference between the energies of two energy levels is the amount of energy in a photon emitted or absorbed when an electron makes a transition. The energy of a photon emitted or absorbed by an electron is,
Here,
The equation to relate the frequency and wavelength of radiation is as follows:
The above relation can be modified as follows:
(c)

Answer to Problem 7.81P
The shortest wavelength of radiation that could be absorbed by the electron in the
Explanation of Solution
Since the absorption of radiation occurs, hence the electron from
The shortest wavelength of radiation will be absorbed for a transition from
The energy of the energy level 4 and 6 are
The formula to calculate the difference in the energies of energy level 4 and 6 is,
Substitute
Substitute
Rearrange the above equation to calculate the value of
The shortest wavelength of radiation that could be absorbed by the electron in the
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- Provide the structure, circle or draw, of the monomeric unit found in the biological polymeric materials given below. HO OH amylose OH OH 행 3 HO cellulose OH OH OH Ho HOarrow_forwardWhat units (if any) does K have? Does K depend upon how the concentration is expressed (e.g. molarity, ppm, ppb, etc.)? in calculating the response factorarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Don't used Ai solution and don't used hand raitingarrow_forwardOA. For the structure shown, rank the bond lengths (labeled a, b and c) from shortest to longest. Place your answer in the box. Only the answer in the box will be graded. (2 points) H -CH3 THe b Нarrow_forwardDon't used hand raitingarrow_forward
- Quizzes - Gen Organic & Biological Che... ☆ myd21.lcc.edu + O G screenshot on mac - Google Search savings hulu youtube google disney+ HBO zlib Homework Hel...s | bartleby cell bio book Yuzu Reader: Chemistry G periodic table - Google Search b Home | bartleby 0:33:26 remaining CHEM 120 Chapter 5_Quiz 3 Page 1: 1 > 2 > 3 > 6 ¦ 5 > 4 > 7 ¦ 1 1 10 8 ¦ 9 a ¦ -- Quiz Information silicon-27 A doctor gives a patient 0.01 mC i of beta radiation. How many beta particles would the patient receive in I minute? (1 Ci = 3.7 x 10 10 d/s) Question 5 (1 point) Saved Listen 2.22 x 107 222 x 108 3.7 x 108 2.22 x 108 none of the above Question 6 (1 point) Listen The recommended dosage of 1-131 for a test is 4.2 μCi per kg of body mass. How many millicuries should be given to a 55 kg patient? (1 mCi = 1000 μСi)? 230 mCiarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Q3: Arrange each group of compounds from fastest SN2 reaction rate to slowest SN2 reaction rate. CI Cl H3C-Cl CI a) A B C D Br Br b) A B C Br H3C-Br Darrow_forwardQ4: Rank the relative nucleophilicity of halide ions in water solution and DMF solution, respectively. F CI Br | Q5: Determine which of the substrates will and will not react with NaSCH3 in an SN2 reaction to have a reasonable yield of product. NH2 Br Br Br .OH Brarrow_forwardClassify each molecule as optically active or inactive. Determine the configuration at each H соон Chirality center OH 애 He OH H3C Ноос H H COOH A K B.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





