
Concept explainers
(a)
Interpretation:
Whether the
Concept introduction:
An atom of hydrogen contains one electron. But the spectrum of hydrogen consists of a large number of lines. This is so because a sample of hydrogen contains a very large number of atoms. When energy is supplied to a sample of gaseous atoms of hydrogen, different atoms absorb different amounts of energy. Therefore, the electrons in different atoms jump to different energy levels. Upon losing the energies gained initially, the electrons jump back to lower energy levels and release radiations of different wavelengths.
The equation used to predict the position and wavelength of any line in a given series is called the Rydberg’s equation.
Rydberg’s equation is as follows:
Here,
The conversion factor to convert wavelength from
(a)

Answer to Problem 7.80P
The
Explanation of Solution
The overlap between
The longest wavelength in the
Substitute
The shortest wavelength in the
Substitute
The longest wavelength for
The
(b)
Interpretation:
Whether the
Concept introduction:
An atom of hydrogen contains one electron. But the spectrum of hydrogen consists of a large number of lines. This is so because a sample of hydrogen contains a very large number of atoms. When energy is supplied to a sample of gaseous atoms of hydrogen, different atoms absorb different amounts of energy. Therefore, the electrons in different atoms jump to different energy levels. Upon losing the energies gained initially, the electrons jump back to lower energy levels and release radiations of different wavelengths.
The equation used to predict the position and wavelength of any line in a given series is called the Rydberg’s equation.
Rydberg’s equation is as follows:
Here,
(b)

Answer to Problem 7.80P
The
Explanation of Solution
The overlap between
The longest wavelength in the
Substitute
The shortest wavelength in the
Substitute
The longest wavelength for
The
(c)
Interpretation:
The number of lines in the
Concept introduction:
An atom of hydrogen contains one electron. But the spectrum of hydrogen consists of a large number of lines. This is so because a sample of hydrogen contains a very large number of atoms. When energy is supplied to a sample of gaseous atoms of hydrogen, different atoms absorb different amounts of energy. Therefore, the electrons in different atoms jump to different energy levels. Upon losing the energies gained initially, the electrons jump back to lower energy levels and release radiations of different wavelengths.
The equation used to predict the position and wavelength of any line in a given series is called the Rydberg’s equation.
Rydberg’s equation is as follows:
Here,
(c)

Answer to Problem 7.80P
The number of lines in the
Explanation of Solution
The shortest wavelength in the
Substitute
In the
The longest wavelength in the
Substitute
For
Substitute
For
Substitute
The first two lines with
The number of lines in the
(d)
Interpretation:
The implication about the hydrogen atom line spectrum made by the overlap at longer wavelengths is to be determined.
Concept introduction:
An atom of hydrogen contains one electron. But the spectrum of hydrogen consists of a large number of lines. This is so because a sample of hydrogen contains a very large number of atoms. When energy is supplied to a sample of gaseous atoms of hydrogen, different atoms absorb different amounts of energy. Therefore, the electrons in different atoms jump to different energy levels. Upon losing the energies gained initially, the electrons jump back to lower energy levels and release radiations of different wavelengths.
(d)

Answer to Problem 7.80P
The implication about the hydrogen atom line spectrum made by the overlap at longer wavelengths is that the hydrogen spectrum becomes more complex at longer wavelengths.
Explanation of Solution
The longer wavelengths of a series have more overlapping with the short wavelengths of the successive series. The overlapping of the lines leads to the formation of a continuous spectrum in the form of band. This makes it difficult for the analyst to interpret the needed information. Hence, the overlapping of the lines leads to the complexity of the hydrogen spectrum.
The implication about the hydrogen atom line spectrum made by the overlap at longer wavelengths is that the hydrogen spectrum becomes more complex at longer wavelengths.
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry: The Molecular Nature of Matter and Change - Standalone book
- Show your work and do something that is reasonable. It does not have to be 100% correct. Just show something that looks good or pretty good as acceptable answers. Something that looks reasonable or correct would be sufficient. If you can get many of them correct that would be great!arrow_forwardShow your work and do something that is reasonable. It does not have to be 100% correct. Just show something that looks good or pretty good as acceptable answers. Something that looks reasonable or correct would be sufficient. If you can get many of them correct that would be great!arrow_forwardTake a look at the following molecule, and then answer the questions in the table below it. (You can click the other tab to see the molecule without the colored regions.) with colored region plain 0= CH2-0-C-(CH2)16-CH3 =0 CH-O-C (CH2)7-CH=CH-(CH2)5-CH3 D CH3 | + OMPLO CH3-N-CH2-CH2-0-P-O-CH2 B CH3 A Try again * 000 Ar 8 0 ?arrow_forward
- Show your work and do something that is reasonable. It does not have to be 100% correct. Just show something that looks good or pretty good as acceptable answers.arrow_forwardShow your work and do something that is reasonable. It does not have to be 100% correct. Just show something that looks good or pretty good as acceptable answers.arrow_forward= 1 = 2 3 4 5 6 ✓ 7 8 ✓ 9 =10 Devise a synthesis to prepare the product from the given starting material. Complete the following reaction scheme. Part 1 of 3 -Br Draw the structure for compound A. Check Step 1 Step 2 A Click and drag to start drawing a structure. × ↓m + OH Save For Later S 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privaarrow_forward
- Predict the products of this organic reduction: 田 Check AP + + H2 Lindlar catalyst Click an drawing 2025 McGraw Hill LLC. All Rigarrow_forward70 Suppose the molecule below is in acidic aqueous solution. Is keto-enol tautomerization possible? • If a keto-enol tautomerization is possible, draw the mechanism for it. Be sure any extra reagents you add to the left-hand sid available in this solution. • If a keto-enol tautomerization is not possible, check the box under the drawing area. : ☐ Add/Remove step Click and drag to st drawing a structure Check Save For Late. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Usearrow_forwardThe problem will not be graded for correctness, but you have to get a reasonable answer something that is either correct or very closer to the correct answer. The instructor professor wants us to do something that shows the answer but everything does not have to be correct. Ideally, yes, it has to be correct. Give it your best shot.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





