(a)
Interpretation:
A general expression for the ionization energy of a one electron species is to be written.
Concept introduction:
Ionization energy is defined as the amount of energy required to remove an electron from an isolated gaseous atom. The energy required to remove an electron from an atom depends on the position of the electron in the atom. The closer the electron is to the nucleus in the atom, the harder it is to pull it out of the atom. As the distance of an electron from the nucleus increases, the magnitude of the forces of attraction between the electron and the nucleus decreases. Thus it becomes easier to remove it from the atom.
The equation to find the difference in the energy between the two levels in hydrogen-like atoms is,
(b)
Interpretation:
The ionization energy of
Concept introduction:
Ionization energy is defined as the amount of energy required to remove an electron from an isolated gaseous atom. The energy required to remove an electron from an atom depends on the position of the electron in the atom. The closer the electron is to the nucleus in the atom, the harder it is to pull it out of the atom. As the distance of an electron from the nucleus increases, the magnitude of the forces of attraction between the electron and the nucleus decreases. Thus it becomes easier to remove it from the atom.
The general expression for the ionization energy of one mole of a one electron species is
(c)
Interpretation:
The minimum wavelength required to remove the electron from the
Concept introduction:
Ionization energy is defined as the amount of energy required to remove an electron from an isolated gaseous atom. The energy required to remove an electron from an atom depends on the position of the electron in the atom. The closer the electron is to the nucleus in the atom, the harder it is to pull it out of the atom. As the distance of an electron from the nucleus increases, the magnitude of the forces of attraction between the electron and the nucleus decreases. Thus it becomes easier to remove it from the atom.
The equation that relates to the frequency and wavelength of
Here,
Energy is proportional to the frequency and is expressed by the Plank-Einstein equation as follows:
Here,
The above relation can be modified as follows:
(d)
Interpretation:
The minimum wavelength required to move the electron from
Concept introduction:
The equation to find the difference in the energy between the two levels in hydrogen-like atoms is,
The equation that relates to the frequency and wavelength of electromagnetic radiation is as follows:
Here,
Energy is proportional to the frequency and is expressed by the Plank-Einstein equation as follows:
Here,
The above relation can be modified as follows:

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
CHEMISTRY:MOLECULAR...V.2 W/ACCESS
- a. Determine whether each of the Followery Molecules is in the R- On the y- Configuration 1-01"/ 1-6-4 Br 4 I el Br b. Draw The Fisher projection For all the Meso compounds that can exist FOR The Following molenlearrow_forward1- Refer to the monosaccharides below to answer each of the following question(s): CH₂OH CHO CH₂OH CH₂OH 0 H- OH 0 0 HO- H H- -OH HO H HO H H OH HO- H CH₂OH H. OH HO H HO- H CH₂OH CH₂OH CH3 a. Sorbose b. Rhamnose c. Erythrulose d. Xylulose Classify each sugar by type; for example, glucose is an aldohexose. a. Xylulose is .. b. Erythrulose is . c. Sorbose is .. d. Rhamnose is .. 2- Consider the reaction below to answer the following question(s). CHO H OH CH₂OH CH₂OH HO- H HO HO + H. -OH HO OH HO. H OH OH H -OH H OH CH₂OH Q Z a. Refer to Exhibit 25-11. Place a triangle around the anomeric carbon in compound Q. Compound Z is: b. 1. the D-anomer. 2. the a-anomer. 3. the ẞ-anomer. 4. the L-anomer. c. Which anomer is the LEAST stable? d. Q and Z are cyclic examples of: a. acetals b. hemiacetals c. alditols d. hemialditolsarrow_forwardi need help identifying the four carbon oxygen bonds in the following:arrow_forward
- Imagine each of the molecules shown below was found in an aqueous solution. Can you tell whether the solution is acidic, basic, or neutral? molecule HO H3N + The solution is... X O acidic OH O basic H3N-CH-C-O O neutral ○ (unknown) O acidic ○ basic CH2 CH 3-S-CH2 O neutral ○ (unknown) H3N O OH O acidic O basic Oneutral O (unknown) 0 H3N-CH-C-O CH3 CH CH3 O acidic O basic O neutral ○ (unknown) ? olo Ar BHarrow_forwardno Ai walkthroughs need other product (product in picture is wrong dont submit the same thing)arrow_forwardHow to solve this!arrow_forward
- I have a 2 mil plastic film that degrades in 22 days at 88C and 153 days at 61C what is the predicted theoretical degradation at 47C?arrow_forwardno ai walkthrougharrow_forwardI have a 2 mil plastic film that degrades after 22 days at 88C and at 61C takes 153 days. What is the failure at 47C in days.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





