
(a)
Interpretation:
The boiling and freezing points of a
Concept introduction:
Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.66E
The boiling and freezing points of a
Explanation of Solution
The formula to calculate boiling point is given below as,
Where,
•
•
•
Since urea is a nonelectrolyte, it will not dissociate in the solution and the value of
Substitute the value of
Now, the boiling point of water solution can be calculated by adding value of
The formula to calculate freezing point is given below as,
Where,
•
•
•
Since urea is a nonelectrolyte, it will not dissociate in the solution and the value of
Substitute the value of
Now, the freezing point of water solution can be calculated by subtracting value of
The boiling and freezing points of a
(b)
Interpretation:
The boiling and freezing points of a
Concept introduction:
Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.66E
The boiling and freezing points of a
Explanation of Solution
The formula to calculate boiling point is given below as,
Where,
•
•
•
Since
Substitute the value of
Now, the boiling point of water solution can be calculated by adding value of
The formula to calculate freezing point is given below as,
Where,
•
•
•
Since
Substitute the value of
Now, the freezing point of water solution can be calculated by subtracting value of
The boiling and freezing points of a
(c)
Interpretation:
The boiling and freezing points of a solution containing
Concept introduction:
Solutes which give conducting solutions on dissolution are called electrolytes. Those which dissociate completely in the solution are known as strong electrolytes. Solutes which do not give conducting solutions are called nonelectrolytes. The properties which depend on the number of solute particles are known as colligative properties. Some of these properties are boiling point, freezing point and osmotic pressure.

Answer to Problem 7.66E
The boiling and freezing points of a solution containing
Explanation of Solution
The formula to calculate number of moles of solutes is given below as,
The molar mass of ethylene glycol can be calculated as follows.
Substitute the values in the above equation as follows.
The formula to calculate molarity is given below as,
Substitute the value of number of moles of solute and volume of solution in the above equation as follows.
The formula to calculate boiling point is given below as,
Where,
•
•
•
Since ethylene glycol is a nonelectrolyte, it will not dissociate in the solution and the value of
Substitute the value of
Now, the boiling point of water solution can be calculated by adding value of
The formula to calculate freezing point is given below as,
Where,
•
•
•
Since ethylene glycol is a nonelectrolyte, it will not dissociate in the solution and the value of
Substitute the value of
Now, the freezing point of water solution can be calculated by subtracting value of
The boiling and freezing points of a solution containing
Want to see more full solutions like this?
Chapter 7 Solutions
Study Guide with Student Solutions Manual for Seager/Slabaugh/Hansen's Chemistry for Today: General, Organic, and Biochemistry, 9th Edition
- Draw the mechanism for the acid-catalyzed dehydration of 2-methyl-hexan-2-ol with arrows please.arrow_forward. Draw the products for addition reactions (label as major or minor) of the reaction between 2-methyl-2-butene and with following reactants : Steps to follow : A. These are addition reactions you need to break a double bond and make two products if possible. B. As of Markovnikov rule the hydrogen should go to that double bond carbon which has more hydrogen to make stable products or major product. Here is the link for additional help : https://study.com/academy/answer/predict-the-major-and-minor-products-of-2-methyl- 2-butene-with-hbr-as-an-electrophilic-addition-reaction-include-the-intermediate- reactions.html H₂C CH3 H H3C CH3 2-methyl-2-butene CH3 Same structure CH3 IENCESarrow_forwardDraw everything on a piece of paper including every single step and each name provided using carbons less than 3 please.arrow_forward
- Topics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. H The IUPAC name isarrow_forward[Review Topics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. The IUPAC name is Submit Answer Retry Entire Group 9 more group attempts remainingarrow_forwardPlease draw.arrow_forward
- A chromatogram with ideal Gaussian bands has tR = 9.0 minutes and w1/2 = 2.0 minutes. Find the number of theoretical plates that are present, and calculate the height of each theoretical plate if the column is 10 centimeters long.arrow_forwardAn open tubular column has an inner diameter of 207 micrometers, and the thickness of the stationary phase on the inner wall is 0.50 micrometers. Unretained solute passes through in 63 seconds and a particular solute emerges at 433 seconds. Find the distribution constant for this solute and find the fraction of time spent in the stationary phase.arrow_forwardConsider a chromatography column in which Vs= Vm/5. Find the retention factor if Kd= 3 and Kd= 30.arrow_forward
- To improve chromatographic separation, you must: Increase the number of theoretical plates on the column. Increase the height of theoretical plates on the column. Increase both the number and height of theoretical plates on the column. Increasing the flow rate of the mobile phase would Increase longitudinal diffusion Increase broadening due to mass transfer Increase broadening due to multiple paths You can improve the separation of components in gas chromatography by: Rasing the temperature of the injection port Rasing the temperature of the column isothermally Rasing the temperature of the column using temperature programming In GC, separation between two different solutes occurs because the solutes have different solubilities in the mobile phase the solutes volatilize at different rates in the injector the solutes spend different amounts of time in the stationary phasearrow_forwardplease draw and example of the following: Show the base pair connection(hydrogen bond) in DNA and RNAarrow_forwardNaming and drawing secondary Write the systematic (IUPAC) name for each of the following organic molecules: CH3 Z structure CH3 CH2 CH2 N-CH3 CH3-CH2-CH2-CH-CH3 NH CH3-CH-CH2-CH2-CH2-CH2-CH2-CH3 Explanation Check ☐ name ☐ 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy C Garrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co




