
(a)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given
In
However, in the given reaction halogen atom is not attached to chiral carbon. It is bonded to non-chiral carbon atom. The attack of nucleophile has not affect on the stereochemistry of reactant as shown in Figure 1.
Figure 1
The stereochemistry of reactant and product is same.
The mechanism of given nucleophilic substitution reaction is
(b)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 2
The mechanism of given nucleophilic substitution reaction is
(c)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that carbon atom, on which bromine atom is present, is bonded to three other carbon atoms. Hence, the bromine atom is bonded to tertiary carbon atom. The removal of bromine atom leads to the formation of planer tertiary carbocation. The tertiary carbocation is most likely to undergo nucleophilic substitution reaction by
In
Figure 3
The mechanism of given nucleophilic substitution reaction is
(d)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which iodine atom is present, is bonded to two other carbon atoms. Hence, the iodine atom is bonded to secondary carbon atom. The removal of iodine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 4
The mechanism of given nucleophilic substitution reaction is
(e)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 5
The mechanism of given nucleophilic substitution reaction is
(f)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.63P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 6
The mechanism of given nucleophilic substitution reaction is
Want to see more full solutions like this?
Chapter 7 Solutions
PKG ORGANIC CHEMISTRY
- Identify the compound with the longest carbon - nitrogen bond. O CH3CH2CH=NH O CH3CH2NH2 CH3CH2C=N CH3CH=NCH 3 The length of all the carbon-nitrogen bonds are the samearrow_forwardIdentify any polar covalent bonds in epichlorohydrin with S+ and 8- symbols in the appropriate locations. Choose the correct answer below. Η H's+ 6Η Η Η Η Η Ηδ Η Ο Ο HH +Η Η +Η Η Η -8+ CIarrow_forwardH H:O::::H H H HH H::O:D:D:H HH HH H:O:D:D:H .. HH H:O:D:D:H H H Select the correct Lewis dot structure for the following compound: CH3CH2OHarrow_forward
- Rank the following compounds in order of decreasing boiling point. ннннн -С-С-Н . н-с- ННННН H ΗΤΗ НННН TTTĪ н-с-с-с-с-о-н НННН НН C' Н н-с-с-с-с-н НН || Ш НННН H-C-C-C-C-N-H ННННН IVarrow_forwardRank the following compounds in order of decreasing dipole moment. |>||>||| ||>|||>| |>|||>|| |||>||>| O ||>>||| H F H F H c=c || H c=c F F IIIarrow_forwardchoose the description that best describes the geometry for the following charged species ch3-arrow_forward
- Why isn't the ketone in this compound converted to an acetal or hemiacetal by the alcohol and acid?arrow_forwardWhat is the approximate bond angle around the nitrogen atom? HNH H Harrow_forwardOH 1. NaOCH2CH3 Q 2. CH3CH2Br (1 equiv) H3O+ Select to Draw 1. NaOCH2 CH3 2. CH3Br (1 equiv) heat Select to Edit Select to Drawarrow_forward
- Complete and balance the following half-reaction in acidic solution. Be sure to include the proper phases for all species within the reaction. S₂O₃²⁻(aq) → S₄O₆²⁻(aq)arrow_forwardQ Select to Edit NH3 (CH3)2CHCI (1 equiv) AICI 3 Select to Draw cat. H2SO4 SO3 (1 equiv) HO SOCl2 pyridine Select to Edit >arrow_forwardComplete and balance the following half-reaction in basic solution. Be sure to include the proper phases for all species within the reaction. Zn(s) → Zn(OH)₄²⁻(aq)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





