Two identical steel balls, each of diameter 25.4 nun and moving in opposite directions at 5 m/s, run into each other head-on and bounce apart. Prior to the collision, one of the balls is squeezed in a vise while precise measurements are made of the resulting amount of compression. The results show that Hooke’s law is a fair model of the ball’s elastic behavior. For one datum, a force of 16 kN exerted by each jaw of the vise results in a 0.2-mm reduction in the diameter. The diameter returns to its original value when the force is removed, (a) Modeling the ball as a spring, find its spring constant. (b) Does the interaction of the balls during the collision last only for an instant or for a nonzero time interval? State your evidence, (c) Compute an estimate for the kinetic energy of each of the balls before they collide, (d) Compute an estimate for the maximum amount of compression each ball undergoes when the balls collide, (e) Compute an order-of-magnitude estimate for the time interval for which the balls are in contact. (In Chapter 15, you will learn to calculate the contact time interval precisely.)
(a)
The spring constant of ball when models the ball as a spring.
Answer to Problem 7.57AP
The spring constant of ball is
Explanation of Solution
Given info: The diameter of each steel ball is
The ball models as a spring then from Hooke’s law, the force exerts on the spring is,
Here,
Rearrange the above equation.
Substitute
Conclusion:
Therefore, the spring constant of ball is
(b)
The interaction of the balls during the collision.
Answer to Problem 7.57AP
The interaction of the balls during the collision cannot happen.
Explanation of Solution
The interaction of the balls during the collision is calculable through the time period.
From the Newton’s law, the force exerts by a jaw is,
Here,
The expression for the acceleration of the steel balls is,
Here,
The total velocity of the balls during the collision is,
Here,
Substitute
Substitute
The interaction of the balls during the collision lasts for a time interval if the interaction takes no time interval that means
Substitute
The zero time interval of interaction, the force exerted by each ball on the other would be infinite and that cannot happen.
Conclusion:
Therefore, the interaction of the balls during the collision cannot happen.
(c)
The kinetic energy of each of the balls before they collide.
Answer to Problem 7.57AP
The kinetic energy of each ball is
Explanation of Solution
The value of density of the steel is
The expression for the volume of steel ball is,
Here,
The radius of ball is the half of its diameter so the radius of steel ball is,
Here,
Substitute
Substitute
The expression for the mass of the steel ball is,
Substitute
The expression for the kinetic energy of the steel ball before they collide is,
Substitute
Conclusion:
Therefore, the kinetic energy of each ball is
(d)
The maximum amount of compression each balls when balls collide.
Answer to Problem 7.57AP
The maximum amount of compression of each balls is
Explanation of Solution
From part (c), the kinetic energy before collision of balls is,
The expression for the kinetic energy of spring after the collision of balls is,
Here,
The ball is models as a spring so the kinetic energy before the collisions of balls is converted into spring energy.
From part (a), the spring constant of balls that models as a spring is,
Substitute
Conclusion:
Therefore, the maximum amount of compression of each balls is
(e)
The time interval for which the balls are in contact.
Answer to Problem 7.57AP
The time interval is
Explanation of Solution
From part (a), the force exerts on the both the balls that models as spring is,
The average force of both the balls is,
From part (b), the expression for the time interval is,
Substitute
The steel balls move in opposite direction of each other so the velocity has opposite sign after they bounce apart to each other.
From part (a), the spring constant of balls that models as a spring is,
From part (c), the mass of steel ball is,
From part (d), the spring constant of the ball is,
Substitute
Conclusion:
Therefore, the time interval is
Want to see more full solutions like this?
Chapter 7 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
- Question B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forwardPage 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forward
- No chatgpt pls will upvote Iarrow_forwardHow would partial obstruction of an air intake port of an air-entrainment mask effect FiO2 and flow?arrow_forward14 Z In figure, a closed surface with q=b= 0.4m/ C = 0.6m if the left edge of the closed surface at position X=a, if E is non-uniform and is given by € = (3 + 2x²) ŷ N/C, calculate the (3+2x²) net electric flux leaving the closed surface.arrow_forward
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning