Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.51P
(a)
To determine
(i) The first order correction to the ground state wave function of hydrogen atom in the presence of a uniform electric field.
(ii) The second order correction to the ground state energy.
(b)
To determine
(i) The first order correction to the ground state wave function of hydrogen atom in the presence of a uniform electric field.
(ii) The proof that the total electric dipole moment of the atom is zero.
(iii) The first order and second-order correction to the ground state energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
please help me to figure out this problem
Starting from equation 7.83 attached, derive a formula for the density of states of a photon gas (or any other gas of ultrarelativistic particles having two polarization states). Sketch this function.
6.2 only
Chapter 7 Solutions
Introduction To Quantum Mechanics
Ch. 7.1 - Prob. 7.1PCh. 7.1 - Prob. 7.2PCh. 7.1 - Prob. 7.3PCh. 7.1 - Prob. 7.4PCh. 7.1 - Prob. 7.5PCh. 7.1 - Prob. 7.6PCh. 7.2 - Prob. 7.8PCh. 7.2 - Prob. 7.9PCh. 7.2 - Prob. 7.10PCh. 7.2 - Prob. 7.11P
Ch. 7.2 - Prob. 7.12PCh. 7.2 - Prob. 7.13PCh. 7.3 - Prob. 7.15PCh. 7.3 - Prob. 7.16PCh. 7.3 - Prob. 7.17PCh. 7.3 - Prob. 7.18PCh. 7.3 - Prob. 7.19PCh. 7.3 - Prob. 7.20PCh. 7.3 - Prob. 7.21PCh. 7.3 - Prob. 7.22PCh. 7.4 - Prob. 7.23PCh. 7.4 - Prob. 7.24PCh. 7.4 - Prob. 7.25PCh. 7.4 - Prob. 7.26PCh. 7.4 - Prob. 7.27PCh. 7.4 - Prob. 7.28PCh. 7.4 - Prob. 7.29PCh. 7.5 - Prob. 7.31PCh. 7.5 - Prob. 7.32PCh. 7 - Prob. 7.33PCh. 7 - Prob. 7.34PCh. 7 - Prob. 7.35PCh. 7 - Prob. 7.36PCh. 7 - Prob. 7.37PCh. 7 - Prob. 7.38PCh. 7 - Prob. 7.39PCh. 7 - Prob. 7.40PCh. 7 - Prob. 7.42PCh. 7 - Prob. 7.43PCh. 7 - Prob. 7.44PCh. 7 - Prob. 7.45PCh. 7 - Prob. 7.46PCh. 7 - Prob. 7.47PCh. 7 - Prob. 7.49PCh. 7 - Prob. 7.50PCh. 7 - Prob. 7.51PCh. 7 - Prob. 7.52PCh. 7 - Prob. 7.54PCh. 7 - Prob. 7.56PCh. 7 - Prob. 7.57P
Knowledge Booster
Similar questions
- Sketch the potential energy function of an electron in a hydrogen atom, (a) What is the value of this function at r=0 ? in the limit that r=? (b) What is unreasonable or inconsistent with the former result?arrow_forwardBoth partarrow_forwardIs the total system energy of a dipole a positive potential or a negative potential? Explain your reasoning. HINT: consider the total energy of a bound state atom, where there is a positive nucleus and an electron in orbit/orbitals. Is the electron energy positive or negative energy?arrow_forward
- calculate the expectation value for the potential energy of the H atom with the electron in the 1s orbital. Compare your result with the total energy. What is the kinetic energy of H atom in this state? Verify the virial theorem for the Coulomb potential.arrow_forwardhelp with modern physics questionarrow_forward8.8 Calculate by direct integration the expectation values (r) and (1/r) of the radial position for the ground state of hydrogen. Compare your results to the quoted expressions in Eq. (8.89) and discuss your results. Did you expect that (1/r) # 1/(r)? Use your result for (1/r) to find the expectation value of the kinetic energy of the ground state of hydrogen and discuss your result. 8.9 Calculate by direct integration the expectation value of the radial position for each of thearrow_forward
- A. at pattern. Let's ssuming that the e angular spatial poral frequencies w, correspond to e is then W, 1) ir) [7.33] avelength of the quals the group eing amplitude- e waves of fre- of modulating and sum over is called the wer sideband. 7.19 Given the dispersion relation w = ak', compute both the phase and group velocities. -7.20* Using the relation 1/v = dk/dv. prove that 1 Vg I V₂ 7.21* In the case of lightwaves, show that V = 1 Ve v dv v² dv V 7.22 The speed of propagation of a surface wave in a liquid of depth much greater than λ is given by v dn c dv 11 -+- C solve 7.25 only where g = acceleration of gravity, λ = wavelength, p = density. Y = surface tension. Compute the group velocity of a pulse in the long wavelength limit (these are called gravity waves). 7.23* Show that the group velocity can be written as dv dλ 7.24 Show that the group velocity can be written as gλ 2πΥ + 2πT pλ Vg = V-A ( n + w(dn/dw) 7.25 With the previous problem in mind prove that dn (v) dv n₂ = n(v) + v.…arrow_forwardFor a one dimensional harmonic oscillator, a) obtain y, (x) and y, (x) wave functions b) Using dipole moment operator, d, =e.â where e is electron charge, determine whether the transition from w, (x) to w, (x) is an allowed transition or not. Hint: For an allowed transition, transition electric dipole moment integral ((w, d, w,)) must have a nonzero value.arrow_forwardProblem 4.2 According to quantum mechanics, the electron cloud for a hydrogen atom in the ground state has a charge density. –2r/a p(r) = where q is the charge of the electron and a is the Bohr radius. Find the atomic polarizability of such an atom. [Hint: First calculate the electric field of the electron cloud, Ee(r); then expand the exponential, assuming r « a. For a more sophisticated approach, see W. A. Bowers, Am. J. Phys. 54, 347 (1986).]arrow_forward
- A7arrow_forwardsolve it completely. What are the additional assumption made in the shell model ? Discuss the possible cause for (a) the difference in the energy of j+1/2 and j-1/2 states (b) the pairing energy.arrow_forwardYour answer is partially correct. An electron, trapped in a one-dimensional infinite potential well 366 pm wide, is in its ground state. How much energy must it absorb if it is to jump up to the state with n=7? Number 139.6 Units eVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax