The Bunchberry The bunchberry flower has the fastest-moving parts ever seen in a plant. Initially, the stamens are held by the petals in a bent position, storing energy like a coiled spring. As the petals release, the tips of the stamens fly up and quickly release a burst of pollen. Figure P7. 72 shows the details of the motion. The tips of the stamens act like a catapult, flipping through a 60° angle; the times on the earlier photos show that this happens in just 0.30 ms. We can model a stamen tip as a 1.0-mm-Jong, 10 μg rigid rod with a 10 μg anther sac at one end and a pivot point at the opposite end. Though an oversimplification, we will model the motion by assuming the angular acceleration is constant throughout the motion. P7.751Q Figure P7.72 72. What is the angular acceleration of the anther sac during the motion? A. 3.5 × 10 3 rad/s 2 B. 7.0 × 10 3 rad/s 2 C. 1.2 × 10 7 rad/s 2 D. 2.3 × 10 7 rad/s 2
The Bunchberry The bunchberry flower has the fastest-moving parts ever seen in a plant. Initially, the stamens are held by the petals in a bent position, storing energy like a coiled spring. As the petals release, the tips of the stamens fly up and quickly release a burst of pollen. Figure P7. 72 shows the details of the motion. The tips of the stamens act like a catapult, flipping through a 60° angle; the times on the earlier photos show that this happens in just 0.30 ms. We can model a stamen tip as a 1.0-mm-Jong, 10 μg rigid rod with a 10 μg anther sac at one end and a pivot point at the opposite end. Though an oversimplification, we will model the motion by assuming the angular acceleration is constant throughout the motion. P7.751Q Figure P7.72 72. What is the angular acceleration of the anther sac during the motion? A. 3.5 × 10 3 rad/s 2 B. 7.0 × 10 3 rad/s 2 C. 1.2 × 10 7 rad/s 2 D. 2.3 × 10 7 rad/s 2
The bunchberry flower has the fastest-moving parts ever seen in a plant. Initially, the stamens are held by the petals in a bent position, storing energy like a coiled spring. As the petals release, the tips of the stamens fly up and quickly release a burst of pollen.
Figure P7. 72 shows the details of the motion. The tips of the stamens act like a catapult, flipping through a 60° angle; the times on the earlier photos show that this happens in just 0.30 ms. We can model a stamen tip as a 1.0-mm-Jong, 10 μg rigid rod with a 10 μg anther sac at one end and a pivot point at the opposite end. Though an oversimplification, we will model the motion by assuming the angular acceleration is constant throughout the motion. P7.751Q
Figure P7.72
72. What is the angular acceleration of the anther sac during the motion?
A. 3.5 × 103 rad/s2
B. 7.0 × 103 rad/s2
C. 1.2 × 107 rad/s2
D. 2.3 × 107 rad/s2
Definition Definition Angle at which a point rotates around a specific axis or center in a given direction. Angular displacement is a vector quantity and has both magnitude and direction. The angle built by an object from its rest point to endpoint created by rotational motion is known as angular displacement. Angular displacement is denoted by θ, and the S.I. unit of angular displacement is radian or rad.
a cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?
Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were:
222.22 800.00
61.11 641.67
0.00 588.89
11.11 588.89
8.33 588.89
11.11 588.89
5.56 586.11
2.78 583.33
Give in the answer window the calculated repeated experiment variance in m/s2.
Chapter 7 Solutions
Student Workbook for College Physics: A Strategic Approach Volume 1 (Chs. 1-16)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.