EBK CHEMISTRY: THE SCIENCE IN CONTEXT,
EBK CHEMISTRY: THE SCIENCE IN CONTEXT,
5th Edition
ISBN: 9780393661385
Author: Davies
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 7.39QP
Interpretation Introduction

Interpretation: The thin layers of potassium and sodium are given to be exposed to radiation of wavelength 300nm . The metal that emits electrons with the greater velocity is to be identified. Also the velocity of these electrons is to be calculated.

Concept introduction: Potassium and Sodium are the elements that are present in the periodic table. The velocity of an object tells the rate at which the object is moving with respect to time and position.

To determine: The velocity of the given electrons and the metal that emits electrons with the greater velocity.

Expert Solution & Answer
Check Mark

Answer to Problem 7.39QP

Solution

The velocity of electrons ejected by potassium is 8.04×105m/s_ .

The velocity of electrons ejected by sodium is 6.97×105m/s_ .

Thus, the potassium metal emits the electron with greater velocity.

Explanation of Solution

Explanation

Given

The radiation of wavelength, λ exposed to potassium and sodium is 300nm .

Work function for thin layer potassium, Φ is 3.68×1019J .

Work function for thin layer sodium, Φ is 4.41×1019J .

The energy of a photon is calculated by the formula,

E=hcλE=hv°=Φ (1)

Where,

  • Φ is the work function for elements.
  • E is the energy of a photon.
  • vο is the threshold frequency.
  • h is the Planck’s constant (6.62×1034Js) .
  • c is the velocity of light (3×108m/s) .

The wavelength in nm is converted into m given as,

300nm=300×109m

Substitute the value of wavelength, wavelength and velocity of light in equation (1).

E=6.62×1034×3×108300×109=6.62×1019J

As, E=hv therefore, hv=6.62×1019J

The work function for potassium, Φ=hv0 is 3.68×1019J .

The kinetic energy of an electron is calculated by the formula,

KE=hvhvο (2)

Substitute the value of hv and hvο in the equation (2).

KE=(6.62×10193.68×1019)J=2.94×1019J

The velocity is calculated by the formula,

v=2KEM (3)

Substitute the value of Kinetic energy and mass of an electron in equation (3).

v=2×2.94×10199.11×1031=5.88×10199.11×1031=0.5036×1012=8.04×105m/s_ (4)

Therefore, the velocity of electron emitted by potassium is 8.04×105m/s_ .

The work function for sodium, Φ=hv0 is 4.41×1019J .

The kinetic energy of an electron is calculated by the formula,

KE=hvhvο (5)

Substitute the value of hv and hvο in the equation (5).

KE=(6.62×10194.41×1019)J=2.21×1019J

The velocity is calculated by the formula,

v=2KEM (6)

Substitute the value of Kinetic energy and mass of an electron in equation (6).

v=2×2.21×10199.11×1031=4.42×10199.11×1031=0.485×1012=6.97×105m/s_ (7)

Thus, the velocity of electron emitted by sodium is 6.97×105m/s_ .

Therefore, on comparing the equation (4) and equation (7), it is concluded that electrons ejected from potassium element have greater velocity.

Conclusion

The velocity of electron emitted by potassium is 8.04×105m/s_ .

The velocity of electron emitted by sodium is 6.97×105m/s_ .

Thus, the velocity of electrons will be more in the case of potassium element.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.
When 15.00 mL of 3.00 M NaOH was mixed in a calorimeter with 12.80 mL of 3.00 M HCl, both initially at room temperature (22.00 C), the temperature increased to 29.30 C. The resultant salt solution had a mass of 27.80 g and a specific heat capacity of 3.74 J/Kg. What is heat capacity of the calorimeter (in J/C)? Note: The molar enthalpy of neutralization per mole of HCl is -55.84 kJ/mol.   Which experimental number must be initialled by the Lab TA for the first run of Part 1 of the experiment? a) the heat capacity of the calorimeter b) Mass of sample c) Ti d) The molarity of the HCl e) Tf
Predict products for the Following organic rxn/s by writing the structurels of the correct products. Write above the line provided" your answer D2 ①CH3(CH2) 5 CH3 + D₂ (adequate)" + 2 mited) 19 Spark Spark por every item. 4 CH 3 11 3 CH 3 (CH2) 4 C-H + CH3OH CH2 CH3 + CH3 CH2OH 0 CH3 fou + KMnDy→ C43 + 2 KMn Dy→→ C-OH ") 0 C-OH 1110 (4.) 9+3 =C CH3 + HNO 3 0 + Heat> + CH3 C-OH + Heat CH2CH3 - 3 2 + D Heat H 3 CH 3 CH₂ CH₂ C = CH + 2 H₂ → 2 2

Chapter 7 Solutions

EBK CHEMISTRY: THE SCIENCE IN CONTEXT,

Ch. 7.9 - Prob. 11PECh. 7.10 - Prob. 12PECh. 7.10 - Prob. 13PECh. 7.11 - Prob. 14PECh. 7.12 - Prob. 15PECh. 7 - Prob. 7.1VPCh. 7 - Prob. 7.2VPCh. 7 - Prob. 7.3VPCh. 7 - Prob. 7.4VPCh. 7 - Prob. 7.5VPCh. 7 - Prob. 7.6VPCh. 7 - Prob. 7.7VPCh. 7 - Prob. 7.8VPCh. 7 - Prob. 7.9VPCh. 7 - Prob. 7.10VPCh. 7 - Prob. 7.11QPCh. 7 - Prob. 7.12QPCh. 7 - Prob. 7.13QPCh. 7 - Prob. 7.14QPCh. 7 - Prob. 7.15QPCh. 7 - Prob. 7.16QPCh. 7 - Prob. 7.17QPCh. 7 - Prob. 7.18QPCh. 7 - Prob. 7.19QPCh. 7 - Prob. 7.20QPCh. 7 - Prob. 7.21QPCh. 7 - Prob. 7.22QPCh. 7 - Prob. 7.23QPCh. 7 - Prob. 7.24QPCh. 7 - Prob. 7.25QPCh. 7 - Prob. 7.26QPCh. 7 - Prob. 7.27QPCh. 7 - Prob. 7.28QPCh. 7 - Prob. 7.29QPCh. 7 - Prob. 7.30QPCh. 7 - Prob. 7.31QPCh. 7 - Prob. 7.32QPCh. 7 - Prob. 7.33QPCh. 7 - Prob. 7.34QPCh. 7 - Prob. 7.35QPCh. 7 - Prob. 7.36QPCh. 7 - Prob. 7.37QPCh. 7 - Prob. 7.38QPCh. 7 - Prob. 7.39QPCh. 7 - Prob. 7.40QPCh. 7 - Prob. 7.41QPCh. 7 - Prob. 7.42QPCh. 7 - Prob. 7.43QPCh. 7 - Prob. 7.44QPCh. 7 - Prob. 7.45QPCh. 7 - Prob. 7.46QPCh. 7 - Prob. 7.47QPCh. 7 - Prob. 7.48QPCh. 7 - Prob. 7.49QPCh. 7 - Prob. 7.50QPCh. 7 - Prob. 7.51QPCh. 7 - Prob. 7.52QPCh. 7 - Prob. 7.53QPCh. 7 - Prob. 7.54QPCh. 7 - Prob. 7.55QPCh. 7 - Prob. 7.56QPCh. 7 - Prob. 7.57QPCh. 7 - Prob. 7.58QPCh. 7 - Prob. 7.59QPCh. 7 - Prob. 7.60QPCh. 7 - Prob. 7.61QPCh. 7 - Prob. 7.62QPCh. 7 - Prob. 7.63QPCh. 7 - Prob. 7.64QPCh. 7 - Prob. 7.65QPCh. 7 - Prob. 7.66QPCh. 7 - Prob. 7.67QPCh. 7 - Prob. 7.68QPCh. 7 - Prob. 7.69QPCh. 7 - Prob. 7.70QPCh. 7 - Prob. 7.71QPCh. 7 - Prob. 7.72QPCh. 7 - Prob. 7.73QPCh. 7 - Prob. 7.74QPCh. 7 - Prob. 7.75QPCh. 7 - Prob. 7.77QPCh. 7 - Prob. 7.78QPCh. 7 - Prob. 7.76QPCh. 7 - Prob. 7.79QPCh. 7 - Prob. 7.80QPCh. 7 - Prob. 7.81QPCh. 7 - Prob. 7.82QPCh. 7 - Prob. 7.83QPCh. 7 - Prob. 7.84QPCh. 7 - Prob. 7.85QPCh. 7 - Prob. 7.86QPCh. 7 - Prob. 7.87QPCh. 7 - Prob. 7.88QPCh. 7 - Prob. 7.89QPCh. 7 - Prob. 7.90QPCh. 7 - Prob. 7.91QPCh. 7 - Prob. 7.92QPCh. 7 - Prob. 7.93QPCh. 7 - Prob. 7.94QPCh. 7 - Prob. 7.95QPCh. 7 - Prob. 7.96QPCh. 7 - Prob. 7.97QPCh. 7 - Prob. 7.98QPCh. 7 - Prob. 7.99QPCh. 7 - Prob. 7.100QPCh. 7 - Prob. 7.101QPCh. 7 - Prob. 7.102QPCh. 7 - Prob. 7.103QPCh. 7 - Prob. 7.104QPCh. 7 - Prob. 7.105QPCh. 7 - Prob. 7.106QPCh. 7 - Prob. 7.107QPCh. 7 - Prob. 7.108QPCh. 7 - Prob. 7.109QPCh. 7 - Prob. 7.110QPCh. 7 - Prob. 7.111QPCh. 7 - Prob. 7.112QPCh. 7 - Prob. 7.113QPCh. 7 - Prob. 7.114QPCh. 7 - Prob. 7.115QPCh. 7 - Prob. 7.116QPCh. 7 - Prob. 7.117QPCh. 7 - Prob. 7.118QPCh. 7 - Prob. 7.119QPCh. 7 - Prob. 7.120QPCh. 7 - Prob. 7.121QPCh. 7 - Prob. 7.122QPCh. 7 - Prob. 7.123QPCh. 7 - Prob. 7.124QPCh. 7 - Prob. 7.125QPCh. 7 - Prob. 7.126QPCh. 7 - Prob. 7.127APCh. 7 - Prob. 7.128APCh. 7 - Prob. 7.129APCh. 7 - Prob. 7.130APCh. 7 - Prob. 7.131APCh. 7 - Prob. 7.132APCh. 7 - Prob. 7.133APCh. 7 - Prob. 7.134APCh. 7 - Prob. 7.135APCh. 7 - Prob. 7.136APCh. 7 - Prob. 7.137APCh. 7 - Prob. 7.138APCh. 7 - Prob. 7.139APCh. 7 - Prob. 7.140APCh. 7 - Prob. 7.141APCh. 7 - Prob. 7.142AP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY