(a)
Interpretation:
The absorption and emission transitions in the image are to be determined.
Concept introduction:
Atomic spectrum is a series of
Absorption spectra - When an atom is subjected to energy in the form of heat or light, the electrons absorb the energy. If an electron in a lower energy level absorbs a photon whose energy is equal to the difference in the energies of the lower energy level and a higher energy level, the electron jumps to the higher energy level. The absorption spectra are characterized by the presence of a series of dark lines separated by colored bands.
(b)
Interpretation:
The increasing order of energy of emissions is to be determined.
Concept introduction:
Atomic spectrum is a series of electromagnetic radiations absorbed or emitted when electrons in an atom undergo transitions between different energy levels.
Emission spectra – In the emission spectra, an electron in the higher energy level jumps to a lower energy level by releasing energy. The emission spectra are characterized by the presence of a series of fine lines at specific wavelengths separated by black spaces.
The equation to find the difference in the energy between the two levels in hydrogen-like atoms is,
Here,
(c)
Interpretation:
The increasing order of the wavelengths for absorption transitions is to be determined.
Concept introduction:
Atomic spectrum is a series of electromagnetic radiations absorbed or emitted when electrons in an atom undergo transitions between different energy levels.
Absorption spectra - When an atom is subjected to energy in the form of heat or light, the electrons absorb the energy. If an electron in a lower energy level absorbs a photon whose energy is equal to the difference in the energies of the lower energy level and a higher energy level, the electron jumps to the higher energy level. The absorption spectra are characterized by the presence of a series of dark lines separated by colored bands.
The equation used to predict the position and wavelength of any line in a given series is called the Rydberg’s equation.
Rydberg’s equation is as follows:
Here,
The conversion factor to convert wavelength from

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
CHEMISTRY MOLECULAR NATURE CONNECT ACCES
- The number of hydrogens in an alkyne that has a main chain of 14carbons to which are attached a cyclobutyl ring, a benzene ring, an–OH group, and a Br is A. 34; B. 35; C. 36; D. 24; E. 43arrow_forwardHello! I have a 500 Hz H-NMR for 1,5-bis-(4-methoxyphenyl)-penta-1,4-dien-3-one. I need to label the signals with the corresponding H's. Then, find out if the two alkenes are cis or trans by calculating the J values. I believe that I have the H-NMR labeled correctly, but not sure if I got the J values correct to determine if the two alkenes in the compound will make the compound cis or trans.arrow_forwardWhat is the only possible H-Sb-H bond angle in SbH3?arrow_forward
- Predict the product formed when the compound shown below undergoes a reaction with MCPBA in CH2Cl2. MCPBA is meta-chloroperoxybenzoic acid.arrow_forwardk https://app.aktiv.com STARTING AMOUNT 6 58°F Clear + F1 X Dimensional Analysis - Aktiv Chemistry Your Aktiv Learning trial expires on 02/25/25 at 02:14 PM Question 19 of 22 Polyethylene terephthalate (PET) is used in plastic water bottles. A water bottle has a mass of 14.0 grams. Given a density of 1.38 g/cm³, what is the volume of the plastic used to make the water bottle in cm³ ? ADD FACTOR ANSWER RESET ว 100 14.0 0.01 10.1 1000 0.099 1.38 0.001 Q Search F5 -O+ F6 F7 + F3 F2 W E S4 ST #3 F4 % 5 Y R S & 7 cm³ g/cm³ g ם F8 * 00 8 F9 P ل DOD S F10 F11 F12 Insert D F G H J K + 11arrow_forwardA doctor gives a patient 10 Ci of beta radiation. How many betaparticles would the patient receive in 1 minute? (1 Ci = 3.7 x 1010d/s)arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





