(a)
Which would make the block swing higher, a 0.204 Ruger bullet of mass 2.14 g and muzzle speed 1290 m/s or a 7 mm Remington Magnum bullet of mass 9.71 g and muzzle speed 948 m/s? Assume the bullets enter the block right after leaving the muzzle of the rifle?

Answer to Problem 72QAP
Remington bullet will make the block swing higher.
Explanation of Solution
Given info:
Formula used:
Calculation:
By conservation of momentum,
By conservation of energy,
We know that
So, we have,
Comparing the height of 2 bullets,
Here the ratio is less than 1, so the Remington bullet will make the block swing higher.
Conclusion:
Remington bullet will make the block swing higher.
(b)
Using your answer in part (a), the mass of the block so that when hit by the bullet it will swing through a 60.0° angle? The block hangs from wire of length 1.25 m and negligible mass.

Answer to Problem 72QAP
Mass of block = 2.62 kg
Explanation of Solution
Given info:
Formula used:
Calculation:
From trigonometry the final height of block reached is,
By conservation of energy,
By conservation of momentum,
Conclusion:
Mass of block = 2.62 kg
(c)
What is the speed of an 8.41-g bullet that causes the block to swing upward through a 30.0° angle?

Answer to Problem 72QAP
Speed of an 8.41-g bullet = 566 m/s
Explanation of Solution
Given info:
Formula used:
Calculation:
From trigonometry the final height of block reached is,
By conservation of energy,
By conservation of momentum,
Conclusion:
Speed of an 8.41-g bullet = 566 m/s
Want to see more full solutions like this?
Chapter 7 Solutions
COLLEGE PHYSICS-ACHIEVE AC (1-TERM)
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





