Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 7, Problem 7.1P

To measure the mass flow rate of a fluid in a laminar flow through a circular pipe, a hot-wire-type velocity meter is placed in the center of the pipe. Assuming that the measuring station is far from the entrance of the pipe, the velocity distribution is parabolic:

u ( r ) / U max = [ 1 ( 2 r / D ) 2 ]

where U max is the centerline velocity (r = 0), r is the radial distance from the pipe centerline, and D is the pipe diameter.

  1. Derive an expression for the average fluid velocity at the cross section in terms of U max and D. (b) Obtain an expression for the mass flow rate. (c) If the fluid is mercury at 30°C , D = 10 cm, and the measured value of U max is 0.2 cm/s, calculate the mass flow rate from the measurement.

Chapter 7, Problem 7.1P, 7.1 To measure the mass flow rate of a fluid in a laminar flow through a circular pipe, a

(a)

Expert Solution
Check Mark
To determine

Expression for average velocity of the fluid.

Answer to Problem 7.1P

Average velocity of the fluid is u¯=23Umax

Explanation of Solution

Given information:

Velocity distribution is parabolic, u(r)Umax=[1(2rD)2]

Let ro be radius of the pipe.

D=2ro

u(r)Umax=[1(rro)2]

Average velocity of the fluid is calculated as follows,

Average velocity (u¯)=1ror=0r=rou(r)dr

(u¯)=1ror=0r=roUmax(1(rro)2)dr

u¯=Umaxro[roro33ro2]

 u¯=Umax[113]=23Umax

u¯=23Umax

Average fluid velocity is u¯=23Umax

(b)

Expert Solution
Check Mark
To determine

Expression for mass flow rate.

Answer to Problem 7.1P

Mass flow rate of the fluid is m˙=23πρro2Umax

Explanation of Solution

Mass flow rate (m˙)

m˙=ρAu¯

=ρπro2(23Umax)

m˙=23πρro2 Umax

ρ=denisty of fluid 

mass flow rate of the fluid is m˙=23πρro2Umax

(c)

Expert Solution
Check Mark
To determine

Mass flow rate of mercury.

Answer to Problem 7.1P

Mass flow rate of mercury is 0.14185 kg/s.

Explanation of Solution

Given information:

Diameter of tube (D)=10cm=0.1m=2ro

Umax=0.2cm/s=0.002m/s

From Appendix-2, Table 12, density of mercury (ρ)=13546 kg/m3

Mas flow rate of mercury (m˙)

m˙=23π(13546)(0.12)2(0.002)

m˙=0.14185 kg/s

Mass flow rate of mercury is 0.14185 kg/s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In (Figure 1), take m₁ = 4 kg and mB = 4.6 kg. Determine the z component of the angular momentum Ho of particle A about point O. Determine the z component of the angular momentum Ho of particle B about point O. Suppose that 5 m 8 m/s 4 m 1.5 m 4 m B MB 1 m 2 m 5 30° 6 m/s MA
The two disks A and B have a mass of 4 kg and 6 kg, respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.75. Suppose that (VA)1 = 6 m/s, (VB)₁ = 7 m/s. (Figure 1) Determine the magnitude of the velocity of A just after impact. Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Determine the magnitude of the velocity of B just after impact. Determine the angle between the x axis and the velocity of B just after impact, measured clockwise from the positive x axis. (VB)1 B (VA)1 60° Line of impact
A hot plane surface is maintained at 100°C, and it is exposed to air at 25°C.The combined heat transfer coefficient between the surface and the air is 25W/m²·K. (same as above). In this task, you are asked to design fins to cool asurface by attaching 3 cm-long, 0.25 cm-diameter aluminum pin fins (thermalconductivity, k = 237 W/m·K) with a center-to-center distance of 0.6 cm. (Tip:do not correct the length). Determine the rate of heat transfer from thefinned structure to the air for a 1 m x 1 m section of the plate.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY