Find the average elastic settlement of the foundation.
Answer to Problem 7.1P
The average elastic settlement of the foundation is
Explanation of Solution
Given information:
The width and length of the foundation is
The depth of foundation
The depth of bottom of foundation to rigid layer H is
The modulus of elasticity of clay
The net load per unit area of the foundation is
Calculation:
Find the elastic settlement
Consider
Consider
Refer to figure 7.1 in the text book for finding
Take
Take
Find the elastic settlement using Equation (1).
Therefore, The average elastic settlement of the foundation is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK PRINCIPLES OF FOUNDATION ENGINEERIN
- A rigid foundation is subjected to a vertical column load, P = 355 kN, as shown in Figure 11.43. Estimate the elastic settlement due to the net applied pressure, Ao, on the foundation. Given: B = 2 m; L = 3 m; D, = 1.5 m; H = 4 m; E, = 13,500 kN/m²; and µ, = 0.4. Foundation Δσ Dr Soil Hg = Poisson's ratio E, modulus of elasticity H %3D Rock O Cengage Leaming 2014arrow_forwardA rigid foundation is subjected to a vertical column load. figure and details belowarrow_forwardProblem (4.10): The foundation plan shown in the figure below is subjected to a uniform contact pressure of 40 kN/m². Determine the vertical stress increment due to the foundation load at (5m) depth below the point (x). →|1.5m + 1.5m 2m 3 0.5m 2m + 3m 3m 3marrow_forward
- Problem 1. A column foundation (Figure below) is 3 m × 2 m in plan. The load on the column, including the weight of the foundation is 4500 kN. Determin the average vertical stress increase 4 m beneath the corner of the foundation in the soil layer due to the foundation loading by: a) Boussinesq equations b) 2:1 method Given: Df = 1.5 m, Ø'= 25°, c'= 70 kN/m². 1.5 m 1 m 3m x 2m y = 17 kN/m³ Water level Ysat 19.5 kN/m³arrow_forwardQ1:arrow_forwardA foundation (Figure 1) transmits a stress of 100 kPa on the surface of a soil deposit. a. Evaluate increases of vertical stresses points A, B, and C at the depth of 2m and Sm (2 points) b. At what depth is the increase in vertical stress below A less than 10% of the surface stress? 6 m +2 m- A 2 m -4 m- Figure 1: Plan of foundationarrow_forward
- Foundation Ao Bx L Soil u, = Poisson's ratio E, = = modulus of elasticity H Rock Figure 11.43 11.2 Refer to Figure 11.43. A square rigid foundation measuring 1.8 m x 1.8 m in plan is supported by 8 m (H) of layered soil with the following characteristics: Layer type Thickness (m) E, (kKN/m?) Ya (KN/m?) Loose sand 0-2 20,680 17.6 Medium clay Dense sand 2- 4.5 7580 18.3 19.1 4.5 – 8 58,600 Given that P = 450 kN; D; = 1 m; and u, settlement of the foundation. = 0.3 for all layers, estimate the elastic O Cngagelamirg 2014 ©Cengage Learring 2014arrow_forward8.4 A rectangular foundation is shown in Figure P8.2, given B= 2 m, L=4m q=240 kN/m², H=6m, and D; =2 m. (a) Assuming E = 3800KN/m², calculate the average elastic settlement. Use Eq. (8.24). (b) If the clay is normally consolidated, calculate the consolidation settlement. Use Eq. (8.35) and yat = 17.5 kN/m², C¸ = 0.12, and e, = 1.1.arrow_forward6.8 Refer to Figure P6.8. Using the procedure outlined in Section 6.8, determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 50 ton. [Use Eq. (6.28).] 4:5 ft 3 ft 50 ton (net load) 10 ft 5 ft x 5 ft Sand y=100 lb/ft! Sand Yat=122 lb/ft³ Groundwater table Ysat ⇒120 lb/ft³ = 0.7 C=0.25 -C, 0,06 Preconsolidation pressure = 2000 lb/ft² Figure P6.8arrow_forward
- Please solve with step by step solutions so I can understand the prioblem and theoryarrow_forwardThree foundations are located next to each other (Fig 16). Determine the stress increases at A, B, and C at a depth of 2 m below the ground surface.arrow_forwardrefer to the figure below. Determine the average stress increase in the clay layer below the center of the foundation due to the net foundation load of 50 tons.arrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning