Concept explainers
(a)
Find the quantity of water flowing through the sample per hour.
(a)
Answer to Problem 7.1CTP
The quantity of water flowing through the sample per hour is
Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
Determine the hydraulic conductivity in the vertical direction using the relation.
Substitute 600 mm for H, 200 mm for
Determine the hydraulic gradient using the relation.
Here, L is the total length of the soil layer.
Substitute 470 mm for
Determine the area of the cylindrical tube using the relation.
Substitute 150 mm for d.
Determine the rate of seepage per unit length of the dam using the relation.
Substitute
Therefore, the quantity of water flowing through the sample per hour is
(b)
Find the elevation head (Z), pressure head
(b)
Answer to Problem 7.1CTP
The elevation head (
The pressure head
The total head
The elevation head (
The pressure head
The total head
The elevation head (
The pressure head
The total head
The elevation head (
The pressure head
The total head
Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
Determine the elevation head (
Here,
Substitute 220 mm for
Therefore, the elevation head (
Determine the pressure head
Substitute 470 mm for
Therefore, the pressure head
Determine the total head
Substitute 690 mm for
Therefore, the total head
Determine the elevation head (
Substitute 220 mm for
Therefore, the elevation head (
Determine the value of
Substitute
Determine the total head
Substitute 470 mm for
Therefore, the total head
Determine the pressure head
Substitute 436.3 mm for
Therefore, the pressure head
Determine the elevation head
Substitute 220 mm for
Therefore, the elevation head (
Determine the value of
Substitute
Determine the total head
Substitute 436.3 mm for
The total head
Determine the pressure head
Substitute 432.3 mm for
Therefore, The pressure head
Determine the elevation head
Substitute 220 mm for
Therefore, the elevation head (
Determine the value of
Substitute
Determine the total head
Substitute 432.3 mm for
Therefore, the total head
Determine the pressure head
Substitute 432.3 mm for
Therefore, the pressure head
(c)
Plot the variation of the elevation head, pressure head, and the total head with the horizontal distance along the sample axis (X–X).
(c)
Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
Refer Part b)
Draw the graph between the elevation head pressure head, and the total head with the horizontal distance along the sample axis (X–X) as in Figure (1).
(d)
Plot the variation of the discharge velocity and the seepage velocity along the sample axis (X–X).
(d)
Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
Determine the discharge velocity v using the relation.
Substitute
Determine the seepage velocity of soil I using the relation.
Here,
Substitute 0.000843 cm/sec for v and 0.5 for
Determine the seepage velocity of soil II using the relation.
Here,
Substitute 0.000843 cm/sec for v and 0.6 for
Determine the seepage velocity of soil III using the relation.
Here,
Substitute 0.000843 cm/sec for v and 0.33 for
Draw graph of variation of the discharge velocity and the seepage velocity along the sample axis (X–X).
Refer Figure (1) in Part (c).
(e)
Find the height of the vertical columns of water inside piezometers A and B installed on the sample axis.
(e)
Answer to Problem 7.1CTP
The height of the vertical columns of water at point A is
The height of the vertical columns of water at point B is
Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
The height of water column is equal to the Piezometric or pressure head at a point.
Determine the height of water in point A.
Substitute 656.3 mm for
Therefore, the height of the vertical columns of water at point A is
Determine the height of water in point B.
Substitute 652.3 mm for
Therefore, the height of the vertical columns of water at point B is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK PRINCIPLES OF GEOTECHNICAL ENGINEER
- -125 mm -125 mm -125 mm 100 mm P A C 310 x 45 made of A36 is connected to a plate and carries a load P in tension. The bolts are 22-mm in diameter and is staggered as shown in figure PSAD-016. Properties of C 310 x 45 A = 5680 mm² d = 305 mm t = 12.7 mm tw = 13.0 mm b = 80.5 mm x = 17.1 mm Determine the shear lag factor of the channel. Determine the effective net area of the section in mm². Compute the design capacity of the section.arrow_forwardPlease answer the following and show the step by step answer on clear paperarrow_forwardProblem #1 (Beam optimization). Calculate the length "a" of AB such that the bending moment diagram is optimized (the absolute value of the max and the min is at its lowest). Then draw the shear and moment diagram for the optimized length. Optimize the length to the nearest 0.1 m. You can use RISA 2D as a tool to find the optimized length, however you need to solve for the support reactions at A, B and C by hand and draw the shear and moment diagram by hand. w=20 kN/m A + + a 12 m B Carrow_forward
- 2. Using the Green-Ampt Model, compute the infiltration rate, f, and cumulative infiltration, F, after one hour of infiltration into a sandy clay loam soil. Assume initial moisture conditions are midway between the field capacity and wilting point and that water is ponded to a small but negligible depth on the surface.arrow_forwardAssignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forwardA1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forward
- Please show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forwardFind required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forwardPlease answer this and show me the step by step solutiarrow_forward
- •Two types of concrete storm water drains are comparing: 1-pipe diameter 2m running full. 2-open channel rectangular profile, bottom width 2m and water depth 1.0 m. The drains are laid at gradient of %1.0; manning coefficient=0.013. Determine the velocity of flow and discharge rate for the circular drain. Determine the velocity of flow and discharge rate for the rectangular open culvert.arrow_forwardA1.2- For the frame shown in Figure 2, draw the bending moment, shear force, and axial force diagrams for the shown factored loading case. Note: All loads indicated in Figure 2 are already factored. W₁ = 25 kN/m Figure 2 777 6.0 m M= 10 kN.m P₁ = 20 kN 2.5 marrow_forwardPlease calculate the Centroid and the Moment of Inertia of the two shapes and submit your solution here in one PDF file with detailed calculationsarrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning