INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
INTRO.TO CHEM.ENGR.THERMO.-EBOOK>I<
8th Edition
ISBN: 9781260940961
Author: SMITH
Publisher: INTER MCG
Question
Book Icon
Chapter 7, Problem 7.19P
Interpretation Introduction

Interpretation:

The discharge temperature of isobutene and the power output of the turbine under the given conditions need to be calculated

Concept Introduction:

  • For an ideal gas under isentropic adiabatic conditions, the temperature and pressure are related as:
  • T2T1=( P 2 P 1)γ-1/γ(1)

    where, γ = Cp/Cv

  • The isentropic efficiency of a turbine is given as:
  • η=Actual work done by turbine Adiabatic Work =W˙aW˙s ----(3)

    where, the rate of work done is given as:

    W˙ = n˙ΔH -----(4)

    n˙ = molar flow rate

    ΔH = change in enthalpy

    Thus, turbine efficiency is given as:

    η =W˙aW˙s=H2a-H1H2s-H1

    (or) η =ΔHactualΔHadiabatic ----(5)

The discharge temperature of isobutane = 170.3C0

Power output of turbine = -4250 kW

Given Information:

Inlet pressure, P1 = 5000 kPa

Inlet Temperature, T1= 250C0

Outlet pressure, P2 = 500 kPa

Molar flow rate = 0.7 kmol/s

Turbine efficiency, ? = 0.80

Explanation:

In this case, isobutane has been assumed to behave as an ideal gas. The discharge temperature can be deduced from equation (1) and the power output can be deduced from equation (4).

The heat capacity ratio for isobutane, i.e. ? = 1.2

Calculation:

Step 1:

Calculate the discharge/final temperature, T2

Based on equation (1) we have:

T2T1=( P 2 P 1)γ-1/γ

T2250=(5005000)1.2-1/1.2 =0.681

T2=170.3C0

Step 2:

Calculate the actual enthalpy change

The adiabatic enthalpy change is related to the change in temperature through the specific heat capacity, Cp

ΔHadiabatic = Cp(T2-T1) = 0.0952(170.3-250) = -7.59 kJ/mol

Based on equation (5) the actual enthalpy change is:-

 ΔHactual = η×ΔHadiabatic = 0.80×(-7.59) = -6.07 kJ/mol

Step 3:

Calculate the power output of the turbine

Based on equation (4)

 W˙ = n˙ΔHactual 

Now, Power = Energy/time = Rate of work done

i.e. W˙ = Power = 700 mol.s1×(6.07) kJ.mol-1= -4250 kJ/s

Power = -4250 kW

Thus, the discharge temperature of isobutane = 170.3C0

Power output of turbine = -4250 kW

Blurred answer
Students have asked these similar questions
please provide me the solution with more details. because the previous solution is not clear
please, provide me the solution with details.
please, provide me the solution with details
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The