FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
An adiabatic turbine has an efficiency of 90%. If air is compressed from 1100kpa and 227 degree Celsius to 101kpa. Find the work done and final temperature. Sketch process on T-S diagram.
An isentropic turbine process 5kg/s of steam at 4MPa, which is exhausted at 50kPa and 100 C. Five percent pf this flow is diverted for feedwater heating at 700kPa. Find the power produced by the turbine.
A steam turbine has an inlet of 3 kg/s water at
1200 kPa and 350°C with a velocity of 15 m/s. The
exit is at 100 kPa, 150°C and very low velocity.
Find the specific work and the power produced.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerant R-410a inters a refrigerator compressor at a pressure of 150 kPa, -10 c° and leaves at 1200 kPa, 50 c° with mass flow rate of 3 kg/s. the compressor is water cooled and the heat loss to the water Qloss is 20 kW. Determine the compressor input work W.. Note: Neglect potential and kinetic energy in your calculations. 1 2 CN Compressor coolarrow_forwardRefrigerant-134a,It enters an adiabatic compressor at 10 C temperature and 140 kPa pressure and comes out at 700kPa pressure and 60C temperature.The power consumed in the compressor is 0.5kW.(Ignore the changes in kinetic and potential energies.) a) Compressor's isentropic efficiency b) Calculate the second law efficiency of the compressor. Note:Accept the ambient temperature as 27C.arrow_forwardSteam at 4MPa and 400°C is expanded to 120 kpa in an adiabatic turbine. Find the isentropic efficiency if the steam is exhausted a a saturated vapor.arrow_forward
- A condenser (heat exchanger) brings 1 kg/s water flow at 10 kPa quality 95% to saturated liquid at 10 kPa. The cooling is done by lake water at 20 degree Celsius that returns to the lake at 30 degree Celsius. For an insulated condenser, find the flow rate of cooling water.arrow_forwardwhere do thet get the enthropy valvue for S2?arrow_forwardA closed constant volume system receives 10.5 kJ of paddle work. The system contains oxygen at 344 kPa, 278 K and 0.06 m3. Find the heat loss if the final temperature is 400 K.arrow_forward
- 9. An air compressor takes in air at 105 Pa and 27°C having volume of 1.5 m3/kg and compresses it to 4.5×105 Pa. Find the work done, heat transfer and change in internal energy if the compression is isothermal.arrow_forwardI do not understand the chapter in general. May you please explain why you completed each step as you have. Thank you.arrow_forwardThe power required for the compressor, to handle air adiabatically from 101.325kPaa and 300 °K to 305 kPaa, 2550 Hp. The inlet velocity is 21 m/s and the dischargevelocity of air is 85 m/s. a) If the process is isentropic, find the volume of air handles,in lps, measured at inlet conditions. b) If the compression is irreversible adiabatic totemperature 157.5 °C, with the capacity obtained in a), find the power input.arrow_forward
- 40°C 4. A mixing chamber receives 5 kg/min of ammonia as saturated liquid at -20°C from one line (1) and ammonia at 40°C, 250 kPa from another line (2). The chamber also receives 325 kJ/min of energy as heat transferred from a 40°C reservoir as shown in figure. At the outlet, ammonia leaves as saturated vapor at -20°C. Find the mass flow rate in second line and calculate the total entropy generation in the process. Is this process possible?arrow_forwardTwo-stage compressor that has an intercooler takes in air at 300 K, 100 kPa, and compresses it at 2.2 MPa. The cooler then reduces the air temperature to 340 K, after which it enters the second stage, where it has an outlet pressure of 15.0 MPa. Both stages are adiabatic and reversible. Determine a) Find the heat q in the cooler b) The total specific workarrow_forwardA reciprocating air compressor taken in 2m3/min air at 0.11MPa, 293K which it delivers at 1.5 Mpa, 384 K to an after cooler where the air where the air is cooled at constant pressure to 298 K. the power absorbed by the compressor is 4.15 kW. Determine the heat transfer in (i) the compressor (ii) the cooler. State your assumptions.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY