Concept explainers
(a)
The high heat value in terms of moisture free.

Answer to Problem 7.12P
The high heat value in terms of moisture free is
Explanation of Solution
Given:
Moisture content is
Weight of sample placed in calorimeter is
Gross calorific value is
Weight of ash that remains in the bomb calorimeter after combustion is
Concept Used:
The moisture heat is subtracted from the original heat energy in case of moisture free condition.
Calculation:
Write the expression for high heat value in moisture free condition.
Here, high heat value in moisture free condition is
Convert the mass of the sample to pounds.
Substitute,
Conclusion:
Thus, the high heat value in moisture free condition is
(b)
The high heat value in moisture free and ash free conditions.

Answer to Problem 7.12P
The high heat value in moisture free and ash free condition is
Explanation of Solution
Concept Used:
The moisture heat and the ash heat is subtracted from the original heat energy in case of moisture free and ash free condition.
Calculation:
Write the expression for the high heat value in moisture free and ash free condition.
Here, high heat value in moisture free and ash free condition is
Convert the mass of ash to pounds.
Substitute,
Conclusion:
The value of the high temperature of heat in moisture free and ash free condition is calculated using the concept of subtracting moisture free and ash heat from original energy.
Want to see more full solutions like this?
Chapter 7 Solutions
Solid Waste Engineering: A Global Perspective, Si Edition
- What is the classification of the structure shown below? Hinge a. Internally unstable, statically indeterminate b. Internally stable, statically determinate c. Internally stable, statically indeterminate Od. Internally unstable, statically determinatearrow_forwardship construction question. Sketch a bilge keel, garboard strake and sheer strake.arrow_forwardDraw a cross section of a cargo vessel and show the fallowing: bilge strake, sheer strake, keel plate, floor plate.arrow_forward
- Sketch and Describe a double bottom solid floor of a vesselarrow_forwardExplain the difference between a Class A and Class B bulkheadarrow_forwardBy using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-way slab shown in figure under a uniformly distributed load. Use segment Equilibrium method 2.5 A 7.0m c.g. ㄨˋ B 1 B A IA 2.5 2.0 + 2.5 5.0marrow_forward
- Given cross-classification data for the Jeffersonville Transportation Study Area in this table, develop the family of cross-classification curves. (Use high = $55,000; medium = $25,000; low = $15,000. Submit a file with a maximum size of 1 MB.) Choose File No file chosen This answer has not been graded yet. Determine the number of trips produced (by purpose) for a traffic zone containing 400 houses with an average household income of $35,000. 1610 HBW HBO Your response differs from the correct answer by more than 10%. Double check your calculations. trips 1791 NHB Your response differs from the correct answer by more than 10%. Double check your calculations. trips 1791 Your response differs from the correct answer by more than 10%. Double check your calculations. tripsarrow_forward2.Water is siphoned from a reservoir. Determine (a) the maximum flow rate that can be achieved without cavitation occurring in the piping system (all indicated points) and (b) the maximum elevation of the highest point of the piping system to avoid cavitation. D = 20 cm, and d = 8 cm. The minimum pressure to avoid cavitation in the pipes is Pmin = 2340 Pa (absolute) for T = 20 °C. Water density = 1000 kg/m³. ✓ (1) T=20 C (4)arrow_forward3. Water flows steadily down the inclined pipe as shown. Determine (a) the difference in pressure pı-p2 and (b) the head loss between section (1) and section (2). Flow 5 ft Section (1) 6 in. 30°/ Section (2) 8 in. Mercuryarrow_forward
- 1. Streams of water from two tanks impinges upon each other as shown. If viscous effects are negligible and point A is a stagnation point, determine the height h. Free ets Air 20 ft P₁ = 25 psi 8 ftarrow_forwardProb. Design the dimensions (rectangular) and longitudinal reinforcements for the beans sham. Design the beams as SRBS. Given: fi= 21 MPa fy= 275 hPa X= 23.5 kaf. λ= 1.0arrow_forwardPlease answer the following show me how to solve in your paper dont type thank youarrow_forward
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage LearningMaterials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning





