FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
EXERGY TRANSFER BY HEAT, WORK, AND MASS
A domestic water heater holds 189 L of water at 60°C, 1 atm. Determine the exergy of the hot water, in kJ.
To what elevation, in m, would a 1000-kg mass have to be raised from zero elevation relative to the reference
environment for its exergy to equal that of the hot water? Let To = 298 K, po = 1 atm, g = 9.81 m/s².
A domestic water heater holds 189 L of water at 60°C, 1 atm. Determine the exergy of the hot water, in kJ. To what elevation, in m, would a 1000-kg mass have to be raised from zero elevation for its exergy to equal that of the hot water? Let T0 = 298 K, p0 = 1 atm, g = 9.81 m/s2 .
Knowledge Booster
Similar questions
- Four kilograms of a two-phase liquid-vapor mixture of water initially at 300°C and x, = 0.5 undergo the two different processes 7.33 described below. In each case, the mixture is brought from the initial state to a saturated vapor state, while the volume remains constant. For each process, determine the change in exergy of the water, the net amounts of exergy transfer by work and heat, and the amount of exergy destruction, each in kJ. Let To = 300 K, Po =1 bar, and ignore the effects of motion and gravity. Comment on the difference between the exergy destruction values. a. The process is brought about adiabatically by stirring the mixture with a paddle wheel. Answer b. The process is brought about by heat transfer from a thermal reservoir at 610 K. The temperature of the water at the location where the heat transfer occurs is 610 K Answerarrow_forward7.36 At steady state, hot gaseous products of combustion from a gas turbine cool from 3000°F to 250°F as they flow through a pipe. Owing to negligible fluid friction, the flow occurs at nearly constant pressure. Applying the ideal gas model with ₂ = 0.3 Btu/lb/ºR, determine the exergy transfer accompanying heat transfer from the gas, in Btu per lb of gas flowing. Let T. = 80°F and ignore the effects of motion and gravity. -568.43arrow_forward1. The first law of thermodynamics discussesa. Thermal equilibriumb. Energy conservationc. Direction of heat flowd. Entropy is zero at absolute zero temperature 2. A tank contains 1 kg mass gas whose density is 700 kg/m3. The pressure is increased from 1 bar to 3 bar. The approximate specific boundary work of the system isa. Cannot be find since some data is missingb. 285 kJ/kgc. 0 kJ/kgd. 0.285 kJ/kg 3. The nozzle is a device in whicha. Area decreases b. Area increasesc. Velocity decreases d. Velocity increases 4. Choose the correct statement/s with respect to entropy change during a processa. Entropy increases with increase in pressure at constant temperatureb. Entropy increases with increase in temperature at constant pressurec. Entropy can be kept constant by systematically increase both pressure and temperatured. Entropy can not be changed 5. The isentropic process is also called asa. Adiabatic processb. Irreversible adiabatic processc. Reversible adiabatic processd. Reversible…arrow_forward
- Exergy flow associated with a fluid stream when the fluid properties are variable can be determined by.arrow_forwardExergy of a Flow Stream: Flow (or Stream) Exergy.arrow_forwardSteady-state operating data are shown in the figure below for an open feedwater heater. Heat transfer from the feedwater heater to its surroundings occurs at an average outer surface temperature of 50°C at a rate of 100 kW. Ignore the effects of motion and gravity and let To = 25°C, po = 1 bar. Determine (a) the ratio of the incoming mass flow rates, m/ṁ2. (b) the rate of exergy destruction, in kW. P2 = 1 bar Tz = 400°C 1 ṁy = 0.7 kg/s Pi = 1 bar T, = 40°C Feedwater heater X3 = 25% P3 = 1 bar Tp = 50°C %3D 2)arrow_forward
- Using image below Evaluate the exergy X1 of the initial state 1 and answer the following question: • Is the useful work in the process 1 → 2 → DS smaller, equal, or greater than exergy X1? • Discuss your resultarrow_forwardMultiple choice Questions Question No. 2: When a system is taken from state A to state B through a reversible path 1 and again the system is taken to its initial state A from B through different reversible path 2, then what will be the effect on entropy? a.entropy increasesb.entropy decreasesc. entropy remains constantd. none of the abovearrow_forwardEXPLAIN THE THE DECREASE OF EXERGY PRINCIPLE AND EXERGY DESTRUCTION.arrow_forward
- Determine the change in exergy in kJ for each of the following processes in the system with 1 kg of steam at 20 bar and 240 °C initially. a) In case the system is heated to double its volume at constant pressure. b) In case of expansion by doubling the system volume isothermally. dead state; T0=20 °C, P0=1 bararrow_forwardA balloon filled with helium at 20°C, 1 bar and a volume of 0.5 m³ is moving with a velocity of 15 m/s at an elevation of 0.5 km relative to an exergy reference environment for which To = 20°C, po = 1 bar. Using the ideal gas model with k = 1.67, determine the specific exergy of the helium, in kJ.arrow_forwardWhat does the exergy principle state? The exergy of an isolated system can never decreases, but always increases O The exergy of an isolated system can never increases, but always decreases O The exergy of an isolated system can either increases or decreases O None of the abovearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY