FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
A steam with a quality of 49%, enters an adiabatic nozzle at 3.5 MPa and leaves at 0.4
MPa and 140
oC with a flow of 7 m/s. Find the entrance velocity, in m/s.
3. An adiabatic compressor takes argon from 100 kPa, 300 K to 2000 kPa. The compressor
efficiency is 80%.
(a) Find the outlet temperature (K) and the work (kJ/kg)
(b) Find the entropy generation (kJ/kg-K)
3) A steam with a quality of 49%, enters an adiabatic nozzle at 3.5 MPa and leaves at 0.4
MPa and 140°C with a flow of 7 m/s. Find the entrance velocity, in m/s.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please be very detailedarrow_forwardLow-velocity steam with negligible kinetic energy enters a nozzle at 320°C, 3 MPa. The steam leaves the nozzle at 2 MPa with a velocity of 410 m/s. The mass flow rate is 0.37 kg/s. Find the following:a. Determine the exit state.b. Determine the exit area.arrow_forward4. An evaporator has R-410A at -20°C and quality 80% flowing in. The exit flow is saturated vapor at -20°C. a. Consider the heating to be a reversible process and find the specific heat transfer from the entropy balance. (Answer: 48.7 kJ/kg) b. If the heat source was at -10°C and the inlet and outlet streams still have the same properties as in a), calculate the specific entropy generation? (Answer: 7.33 J/(kg K))arrow_forward
- one kg of air is compressed in a cylinder according to the law PV^1.3= constant. If intital temperature is 100°C amd compression ratio is 15, find the work done and change in entropy of air.arrow_forwardThermodynamics sketch and label the turbine. Sketch and label the process on a T-s diagram also mentions all numbers on the process please. Thanks 7.56 A steam turbine has an inlet of 2 kg/s water at 1000 kPa, 400°C with velocity of 15 m/s. The exit is at 100 kPa, 150°C and very low velocity. Find the power produced and the rate of entropy generation.arrow_forwardAir at the rate of 14kg/sec expands from 3bar, 1500C, 0.1m3 to 1 bar reversibly and adiabatically. Find the exit temperature and power developed. If the heat is given to the system 1200J. Find out the change in internal energyarrow_forward
- A car or engine takes 2000 J of heat from a reservoir at 500 K, does some work, and discards some heat to a reservoir at 350 K. Find the total entropy change in the engine during one cyclearrow_forwardQ6) One kg of air is allowed to expand reversibly in a cylinder behind a piston in an isothermal process at 260°C, while the volume is doubled. The piston is then moved and heat rejected at constant pressure until the volume is the same as it was initially. Find the heat flow and the overall change of entropy.arrow_forwardA condenser (heat exchanger) brings 1 kg/s water flow at 10 kPa quality 95% to saturated liquid at 10 kPa. The cooling is done by lake water at 20 degree Celsius that returns to the lake at 30 degree Celsius. For an insulated condenser, find the flow rate of cooling water.arrow_forward
- Question 3: Superheated steam enters a turbine at 7 MPa, 550°C, and exits at 150kPa a. Draw the system. b. If the process is reversible adiabatic (isentropic), find the final temperature (T2), the final enthalpy (h2,) of the steam, and do the energy balance to calculate the turbine work (Wts). c. Using entropy balance, show that Sgen for the above process is 0. d. If the isentropic efficiency is 85%, find the actual final temperature (T23) and calculate Sgen? e. Plot process in (b) and (d) on a Ts diagram with proper labelling.arrow_forwardThis question is about vapor nozzle Due to a failure, ammonia in a large container overheats to 1400 kPa, 573 K. At this state, a small crack opens in the container that acts as a nozzle. The outside environment is at 100 kPa, 298 K, and the mass flow rate of ammonia is 10 g/s . Assume negligible nozzle inlet velocity and adiabatic reversible flow. Determine the exit velocity, and the exit cross section.arrow_forwardA mixture of 40% oxygen and 60% argon by mass flows into a turbine at 1000 K, 400 kPa and expands to 100 kPa. The turbine has an isentropic efficiency of 85%. Find the actual turbine specific work and specific entropy generation assuming constant specific heats.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamic Availability, What is?; Author: MechanicaLEi;https://www.youtube.com/watch?v=-04oxjgS99w;License: Standard Youtube License