Concept explainers
(a)
The proof for the statement that when
(a)
Answer to Problem 69PQ
It is showed that when
Explanation of Solution
Write the equation for the gravitational field for a mass.
Here,
Write the expression for the difference in gravitational field at a distance
Use equation (I) to find the expression for
Use equation (I) to find the expression for
Put the above two equations in equation (II).
Expand the numerator of the above equation.
It is given that
Conclusion:
Neglect
Thus, it is showed that when
(b)
The difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole.
(b)
Answer to Problem 69PQ
The difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole is
Explanation of Solution
The expression for the difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole is derived in part (a).
Write the expression for the difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole.
Conclusion:
Given that the mass of the black hole is one solar mass, the length of the person is
Substitute
Therefore, the difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole is
(c)
Whether the difference in gravitational field found in part (b) large enough to spaghettify the person.
(c)
Answer to Problem 69PQ
The difference in gravitational field found in part (b) is large enough to spaghettify the person.
Explanation of Solution
Spaghettification is the term used by Stephen Hawking to describe what happens to someone who falls feet first into a small but highly massive object. Since the gravitational field at the person’s feet is sufficiently higher than the gravitational field at the head, the person gets stretched out like a spaghetti noodle.
In part (b), it is found that the difference between the gravitational field of the black hole at the feet and the head if the person falls with feet first into the black hole is
Conclusion:
Since the feet of the person are accelerating toward the black hole
Want to see more full solutions like this?
Chapter 7 Solutions
Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed. NOT AI PLSarrow_forwardThe velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forward
- The velocity of a particle moves along the x-axis and is given by the equation ds/dt = 40 - 3t^2 m/s. Calculate the acceleration at time t=2 s and t=4 s. Calculate also the total displacement at the given interval. Assume at t=0 s=5m.Write the solution using pen and draw the graph if needed.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- An electron and a proton are each accelerated through a potential difference of 21.0 million volts. Find the momentum (in MeV/c) and the kinetic energy (in MeV) of each, and compare with the results of using the classical formulas. Momentum (MeV/c) relativistic classical electron proton Kinetic Energy (MeV)arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 20.0 µF.) (a) Find the equivalent capacitance between points a and b. µF (b) Calculate the charge on each capacitor, taking ΔVab = 14.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forward11. At what point in SHM is the velocity maximum? Displacement maximum?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning