Concept explainers
(a)
Moon’s gravitational field at the side of Earth which is facing Moon.
(a)
Answer to Problem 55PQ
Moon’s gravitational field at the side of Earth facing Moon is
Explanation of Solution
Write the equation to find the gravitational field due to Moon at a distance of Moon-Earth distance minus radius of Earth.
Here,
Write the expression to find
Here,
Use the expression for
Conclusion
Substitute
Therefore, Moon’s gravitational field at the side of Earth facing Moon is
(b)
Moon’s gravitational field at the side of Earth facing away from Moon.
(b)
Answer to Problem 55PQ
Moon’s gravitational field at the side of Earth facing away from Moon is
Explanation of Solution
Write the equation to find the gravitational field due to Moon at a distance of Moon-Earth distance plus radius of Earth.
Write the expression for
Substitute the expression for
Conclusion:
Substitute
Therefore, Moon’s gravitational field at the side of Earth facing away Moon is
(c)
The gravitational field of Moon at the center of Earth.
(c)
Answer to Problem 55PQ
Moon’s gravitational field at the center of Earth is
Explanation of Solution
Write the equation to find the gravitational field due to Moon.
Conclusion:
Substitute
Therefore, Moon’s gravitational field at center of Earth is
(d)
Sketch Earth and include the three vectors from parts (a) through (c).
(d)
Answer to Problem 55PQ
Sketch of Earth and the three vectors from parts (a) through (c) is shown in Figure 1.
Explanation of Solution
Figure 1 shows the sketch of the Earth and the magnitude and direction of the gravitational field vectors found in part (a), (b) and (c).
Conclusion:
Therefore, Sketch of Earth and the three vectors from parts a through c is shown in Figure 1.
(e)
The reason why there are two tides a day on most places on Earth due to Moon.
(e)
Answer to Problem 55PQ
There are two tides a day on most places on Earth due to Moon because the force is larger on bodies of water closer to Moon and smaller on bodies of water on far side of Earth.
Explanation of Solution
Figure below shows the Earth and Moon. High tides and low tides on either side of Earth are due to the lunar activity on Earth. The gravitational pull by Moon on Earth causes high tide and low tide.
The force of Moon is large at water bodies which are close to Moon and lowest on water bodies which are far away. Thus the amplitude or strength of tides is dependent on the distance of the water body and Moon. This is the reason for two types of tides on Earth.
Conclusion:
Therefore, there are two tides a day on most places on Earth due to Moon because the force is larger on bodies of water closer to Moon and smaller on bodies of water on far side of Earth.
Want to see more full solutions like this?
Chapter 7 Solutions
Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics
- No chatgpt pls will upvotearrow_forwardsuggest a reason ultrasound cleaning is better than cleaning by hand?arrow_forwardCheckpoint 4 The figure shows four orientations of an electric di- pole in an external electric field. Rank the orienta- tions according to (a) the magnitude of the torque on the dipole and (b) the potential energy of the di- pole, greatest first. (1) (2) E (4)arrow_forward
- What is integrated science. What is fractional distillation What is simple distillationarrow_forward19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forward
- No chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill