COLLEGE PHYSICS,VOLUME 1
2nd Edition
ISBN: 9781319115104
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 68QAP
To determine
What are the coordinates of the center of mass for the combination of the three objects shown in Figure?
The uniform rod has a mass of 10.0 kg, has a length of 30.0 cm and is located at x = 50 cm. The oval football has a mass of 2.00 kg, a semi major axis of 8.00 cm and is centered at x= -50 cm. The spherical volleyball has a mass of 1 kg, has a radius of 10 cm and is centered at y = -30 cm. Assume both balls are of uniform mass density.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
I. Pushing on a File Cabinet
Bob has been asked to push a heavy file cabinet down the
hall to another office. It's not on rollers, so there is a lot
of friction. At time t = 0 seconds, he starts pushing it
from rest with increasing force until it starts to move at t
= 2 seconds. He pushes the file cabinet down the hall
with varying amounts of force. The velocity versus time
graph of the cabinet is shown below.
A. On the graphs provided below,
1. draw the net force vs. time that would produce this velocity graph;
2. draw the friction force vs. time for this motion;
3. draw the applied force (Fon Cabinet by Bob) VS. time for this motion (the first two seconds of this graph
have been drawn for you).
Velocity (m/s)
Applied Force (N)
Friction Force (N)
Net Force (N)
A
-m
B
-U
time
(s)
D
time
(s)
time
(s)
time
(s)
answer it
Please draw a sketch and a FBD
Chapter 7 Solutions
COLLEGE PHYSICS,VOLUME 1
Ch. 7 - Prob. 1QAPCh. 7 - Prob. 2QAPCh. 7 - Prob. 3QAPCh. 7 - Prob. 4QAPCh. 7 - Prob. 5QAPCh. 7 - Prob. 6QAPCh. 7 - Prob. 7QAPCh. 7 - Prob. 8QAPCh. 7 - Prob. 9QAPCh. 7 - Prob. 10QAP
Ch. 7 - Prob. 11QAPCh. 7 - Prob. 12QAPCh. 7 - Prob. 13QAPCh. 7 - Prob. 14QAPCh. 7 - Prob. 15QAPCh. 7 - Prob. 16QAPCh. 7 - Prob. 17QAPCh. 7 - Prob. 18QAPCh. 7 - Prob. 19QAPCh. 7 - Prob. 20QAPCh. 7 - Prob. 21QAPCh. 7 - Prob. 22QAPCh. 7 - Prob. 23QAPCh. 7 - Prob. 24QAPCh. 7 - Prob. 25QAPCh. 7 - Prob. 26QAPCh. 7 - Prob. 27QAPCh. 7 - Prob. 28QAPCh. 7 - Prob. 29QAPCh. 7 - Prob. 30QAPCh. 7 - Prob. 31QAPCh. 7 - Prob. 32QAPCh. 7 - Prob. 33QAPCh. 7 - Prob. 34QAPCh. 7 - Prob. 35QAPCh. 7 - Prob. 36QAPCh. 7 - Prob. 37QAPCh. 7 - Prob. 38QAPCh. 7 - Prob. 39QAPCh. 7 - Prob. 40QAPCh. 7 - Prob. 41QAPCh. 7 - Prob. 42QAPCh. 7 - Prob. 43QAPCh. 7 - Prob. 44QAPCh. 7 - Prob. 45QAPCh. 7 - Prob. 46QAPCh. 7 - Prob. 47QAPCh. 7 - Prob. 48QAPCh. 7 - Prob. 49QAPCh. 7 - Prob. 50QAPCh. 7 - Prob. 51QAPCh. 7 - Prob. 52QAPCh. 7 - Prob. 53QAPCh. 7 - Prob. 54QAPCh. 7 - Prob. 55QAPCh. 7 - Prob. 56QAPCh. 7 - Prob. 57QAPCh. 7 - Prob. 58QAPCh. 7 - Prob. 59QAPCh. 7 - Prob. 60QAPCh. 7 - Prob. 61QAPCh. 7 - Prob. 62QAPCh. 7 - Prob. 63QAPCh. 7 - Prob. 64QAPCh. 7 - Prob. 65QAPCh. 7 - Prob. 66QAPCh. 7 - Prob. 67QAPCh. 7 - Prob. 68QAPCh. 7 - Prob. 69QAPCh. 7 - Prob. 70QAPCh. 7 - Prob. 71QAPCh. 7 - Prob. 72QAPCh. 7 - Prob. 73QAPCh. 7 - Prob. 74QAPCh. 7 - Prob. 75QAPCh. 7 - Prob. 76QAPCh. 7 - Prob. 77QAPCh. 7 - Prob. 78QAPCh. 7 - Prob. 79QAPCh. 7 - Prob. 80QAPCh. 7 - Prob. 81QAPCh. 7 - Prob. 82QAPCh. 7 - Prob. 83QAPCh. 7 - Prob. 84QAPCh. 7 - Prob. 85QAP
Knowledge Booster
Similar questions
- Part A: kg (a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised m³ iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and discharging at point C from the fully opened gate valve B at a volumetric flow rate of 0.003 m³/s. Determine the required pressure at A, considering all the losses that occur in the system described in Figure Q1. Loss coefficients for pipe fittings have been provided in Table 1. [25 marks] (b) Due to corrosion within the pipe, the average flow velocity at C is observed to be V2 m/s after 10 years of operation whilst the pressure at A remains the same as determined in (a). Determine the average annual rate of growth of k within the pipe. [15 marks] 4₁ Figure Q1. Pipe system Page 2 25 mmarrow_forwardFor an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor. (a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.arrow_forwardA mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the wall. (a) What is the change in the angle of elevation of the Sun, between the two observations?arrow_forward
- It is not (theta 1i) or (pi/2 - theta 2i)arrow_forwardAssume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forwardIdentify the most likely substancearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning