University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 68P
A mass of 0.250 kg oscillates on a spring with the force constant 110 N/m. Calculate the ground energy level and the separation between the adjacent energy levels. Express the results in joules and in electron-volts. Are quantum effects important?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A wooden block with mass 0.250 kg is oscillating on the end of a spring that has force constant 110 N/m. Calculate the ground-level energy and the energy separation between adjacent levels. Express your results in joules and in electron volts. Are quantum effects important?
For small amplitudes of oscillation the motion of a pendulum is simple harmonic. For a pendulum with a period of 0.500 s, find the ground-level energy and the energy difference between adjacent energy levels. Express your results in joules and in electron volts. Are these values detectable?
Consider the Bohr model of the doubly ionized lithium ion (3 protons) with a single electron. The ground state energy is -122.4 ev
What is the kinetic energy for the electron in orbit?
eV
Write down the relationship between the kinetic energy K, the momentump and the mass m
K=
write your answer as a formula, e.g. z=x^4/3y
Use these to find the de Broglie wavelength of the electron in this orbit:
The de Broglie wavelength is
nm
If the electron is actually a standing wave, what radius does this suggest for the electron's orbit?
ro =
nm
Assuming classical uniform circular motion for the electron in the Coulomb potential at the radius computed above, what is the total energy of the atom?
The potential energy is
Oze?/(4tte ro)
Ze2/ (4πε ro)
O-ze?/(8te ro)
Oze/ (8πε r0)
The kinetic energy is
Οze2/ (4πε r0 )
Ο-Ze2/ (4πε r0)
O-Ze2/(8ne r0)
Οze2/ (8πε r0)
The total energy is
Oze2/ (4πε r )
O-Ze2/(4ne r0)
O-Ze2/(8te r0)
OZe2/ (8πε r0)
Hence the total energy is
ev
Chapter 7 Solutions
University Physics Volume 3
Ch. 7 - Check Your Understanding If a=3+4i , what is the...Ch. 7 - Check Your Understanding Suppose that a particle...Ch. 7 - Check Your Understanding For the particle in the...Ch. 7 - Check Your Understanding A sodium atom nukes a...Ch. 7 - Check Your Understanding A particle With mass m is...Ch. 7 - Check Your Understanding Which of the following...Ch. 7 - Check your Understanding (a) Consider an infinite...Ch. 7 - Check Your Understanding The vibrational frequency...Ch. 7 - Check Your Understanding Find the expectation...Ch. 7 - Check Your Understanding A proton with kinetic...
Ch. 7 - What is the physical unit of a wave function,...Ch. 7 - Can the magnitude of a wave function (*(x,t)(x,t))...Ch. 7 - What kind of physical quamtity does a wave...Ch. 7 - What is the physical meaning of a wave function of...Ch. 7 - What is the meaning of the expression "expectation...Ch. 7 - If the formalism of quantum mechanics is 'more...Ch. 7 - Can the de Broglie wavelength of a particle be...Ch. 7 - Can we measure the energy of a free localized...Ch. 7 - Can we measure both the position and momentum of a...Ch. 7 - What is the difference between a wave function...Ch. 7 - If a quantum particle is in a stationary state,...Ch. 7 - Explain the difference between time-dependent and...Ch. 7 - Suppose a wave function is discontinuous at some...Ch. 7 - Using the quantum particle in a box model,...Ch. 7 - Is it possible that when we measure the energy of...Ch. 7 - For a quantum panicle in a box, the first excited...Ch. 7 - Is it possible to measure energy of 0.75h for a...Ch. 7 - Explain the connection between Planck's hypothesis...Ch. 7 - If a classical harmonic oscillator can at rest,...Ch. 7 - Use an example of a quantum particle in a box or a...Ch. 7 - Can we simultaneously measure position and energy...Ch. 7 - When an electron and a proton of the same kinetic...Ch. 7 - What decreases the tunneling probability most:...Ch. 7 - Explain the difference between a box-potential and...Ch. 7 - Can a quantum particle 'escape' from an infinite...Ch. 7 - A tunnel diode and a resonant-tunneling diode both...Ch. 7 - Compute |(x,t)|2 for the function (x,t)=(x)sint,...Ch. 7 - Given the complex-valued function...Ch. 7 - Which one of the following functions, and why,...Ch. 7 - A particle with mass m moving along the x-axis and...Ch. 7 - A wave function of a particle with mass m is given...Ch. 7 - A velocity measurement of an a-particle has been...Ch. 7 - A gas of helium atoms at 273 K is in a cubical...Ch. 7 - If the uncertainty in the y -component of a...Ch. 7 - Some unstable elementary particle has a rest...Ch. 7 - An atom in a metastable state has a lifetime of...Ch. 7 - Measurements indicate that an atom remains in an...Ch. 7 - Suppose an electron is confined to a region of...Ch. 7 - Combine Equation 7.17 and Equation 7.18 to show...Ch. 7 - Show that (x,t)=Aei(kwt) is a valid solution to...Ch. 7 - Show that (x,t)=Asin(kxt) and (x,t)=Acos(kxt) do...Ch. 7 - Show that when 1(x,t) and 2(x,t) are solutions to...Ch. 7 - A particle with mass m is described by the...Ch. 7 - Find the expectation value of the kinetic energy...Ch. 7 - Find the expectation value of the square of the...Ch. 7 - A free proton has a wave function given by...Ch. 7 - Assume that an electron in an atom can be treated...Ch. 7 - Assume that a proton in a nucleus can be treated...Ch. 7 - An electron confined to a box has the ground state...Ch. 7 - What is the ground state energy (in eV) of a...Ch. 7 - What is the ground state energy (in eV) of an a...Ch. 7 - To excite an election in a one-dimensional box...Ch. 7 - An electron confined to a box of width 0.15 nm by...Ch. 7 - If the energy of the first excited state of the...Ch. 7 - Suppose an electron confined to a emits photons....Ch. 7 - Hydrogen H2 molecules are kept at 300.0 K in a...Ch. 7 - An electron is confined to a box of width 0.25 nm....Ch. 7 - An electron in a box is in the ground state with...Ch. 7 - Show that the two lowest energy states of the...Ch. 7 - If the ground state energy of a simple harmonic...Ch. 7 - When a quantum harmonic oscillator makes a...Ch. 7 - Vibrations of the hydrogen molecule H2 can be...Ch. 7 - A particle with mass 0.030 kg oscillates back-and-...Ch. 7 - Find the expectation value x2 of the square of the...Ch. 7 - Determine the expectation value of the potential...Ch. 7 - Verify that given by Equation 7.57 is a solution...Ch. 7 - Estimate the ground state energy of the quantum...Ch. 7 - A mass of 0.250 kg oscillates on a spring with the...Ch. 7 - Show that the wave function in (a) Equation 7.68...Ch. 7 - A 6.0-eV electron impacts on a barrier with height...Ch. 7 - A 5.0-eV electron impacts on a barrier of with...Ch. 7 - A 12.0-eV electron encounters a barrier of height...Ch. 7 - A quantum particle with initial kinetic energy...Ch. 7 - A simple model of a radioactive nuclear decay...Ch. 7 - A muon, a quantum particle with a mass...Ch. 7 - A grain of sand with mass 1.0 mg and kinetic...Ch. 7 - Show that if the uncertainty in the position of a...Ch. 7 - The mass of a -meson is measured to be 770MeV/c2...Ch. 7 - A particle of mass m is confined to a box of width...Ch. 7 - A particle in a box [0; L] is in the third excited...Ch. 7 - A 0.20-kg billiard ball bounces back and forth...Ch. 7 - Find the expectation value of the position squared...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Atoms in a crystal lattice vibrate in simple...Ch. 7 - A diatomic molecule behaves like a quantum...Ch. 7 - An electron with kinetic energy 2.0 MeV encounters...Ch. 7 - A beam of mono-energetic protons with energy 2.0...Ch. 7 - An electron in a long, organic molecule used in a...Ch. 7 - In STM, an elevation of the tip above the surface...Ch. 7 - If STM is to detect surface features with local...Ch. 7 - Use Heisenberg's uncertainty principle to estimate...Ch. 7 - Suppose an infinite square well extends from L/2...Ch. 7 - A particle of mass m confined to a box of width L...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What are the two types of bone marrow, and what are their functions?
Human Anatomy & Physiology (2nd Edition)
How is a mailing address analogous to biologys hierarchical classification system?
Campbell Biology in Focus (2nd Edition)
CAUTION Why does the presence of extinct forms and transitional features in the fossil record support the patte...
Biological Science (6th Edition)
One isomer of methamphetamine is the addictive illegal drug known as crank. Another isomer is a medicine for si...
Campbell Essential Biology (7th Edition)
A human female with Turner syndrome (47, X) also expresses the X-linked trait hemophilia, as did her father. Wh...
Concepts of Genetics (12th Edition)
Which of the following has the greatest effect on the rate of chemical cycling in an ecosystem? (A) the rate of...
Campbell Biology (11th Edition)
Knowledge Booster
Similar questions
- Clearly explain why the quantum oscillator is a good model for representing molecular vibrations.arrow_forward. Evaluate the ground state energy ofa harmonic oscillator of mass 'm' and angular frequency w' using the trial function. COS -a sxsa $ (x) = 2a 0, > aarrow_forwardA relatively long-lived excited state of an atom has a lifetime of 3.00 ms. What is the minimum uncertainty in its energy?arrow_forward
- An electron is confined in a harmonic potential well. A photon is emitted when the electron passes through a quantum leap of 3 --> 1. What is the wavelength of the emission if the well has a spring constant of 9.6 N/m?arrow_forward3. Kittel Ch3-3. Free energy of a harmonic oscillator. A one-dimentional harmonic oscillator has an infinite series of series of equally spaced energy states, with & sħw, where s is a positive integer or zero, and wis the classical frequency of the oscillator. We have chosen the zero energy at the state s-0. (a) Show that for a harmonic oscillator the free energy is F = T log[1- exp(-ħw/T)] Note that at high temperature such that 7 >> ħw we may expand the argument of the logarithm to obtain F=Tlog(ha/T). (b) From (87) show that the entropy is O= hω/τ exp(ħw/T)-1 (87) -log[1-exp(-ħw/T)] (88) The entropy is shown in Figure 3.13 and the heat capacity in Figure 3.14.arrow_forwardAs a harmonic oscillator undergoes a transition from the ground state to the first excited state, it absorbs a photon of wavelength = 5.83 micrometers. Determine the ground state energy of the harmonic oscillator in electron volts..arrow_forward
- The lifetimes of the levels in a hydrogen atom are of the order of 10-8 s. Find the energy uncertainty of the first excited state and compare it with the energy of the state. 3 p ROarrow_forwardA quantum simple harmonic oscillator consists of an electron bound by a restoring force proportional to its position relative to a certain equilibrium point. The proportionality constant is 8.99 N/m. What is the longest wavelength of light that can excite the oscillator?arrow_forwardSolve the following problem: Use rest mass energy of the electron 0.5 MeV Consider an atomic level with quantum numbers n = 2,l = 1 and maximum total angular momentum. a. Find the first order relativistic correction to this level, in electron- volts. b. Find the first order spin-orbit correction to this level, in electron-volts. C. Use your result in parts a and b to find the energy of that level.arrow_forward
- An electron is trapped in an infinite potential well of width 1 cm. For what value of n will the electron have an energy of 2 eV? O a.~1011 Ob. ~10⁹ O C. ~107 O d. ~105arrow_forwardView Policies Current Attempt in Progress Suppose that the electron in the figure, having a total energy E of 4.9 eV, approaches a barrier of height Up = 6.9 eV and thickness L = 700 pm. What percentage change in the transmission coefficient T occurs for a 0.5% change in (a) the barrier height, (b) the barrier thickness, and (c) the kinetic energy of the incident electron? Energy E Elcciron L. (a) Number i Units (b) Number i Units (c) Number i Units MacBook Proarrow_forwardThe electron interference pattern as shown was made by shooting electrons with 50 keV of kinetic energy through two slits spaced 1.0 mm apart. The fringes were recorded on a detector 1.0 m behind the slits.a. What was the speed of the electrons? (The speed is large enough to justify using relativity, but for simplicity do this as a nonrelativistic calculation.)b. Figure is greatly magnified. What was the actual spacing on the detector between adjacent bright fringes?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning