University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 65P
Determine the expectation value of the potential energy for a quantum harmonic oscillator in the ground state. Use this to calculate the expectation value of the kinetic energy.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A quantum mechanical particle of mass m moves in a 1D
potential
where
a) Estimate the ground state energy of the particle.
b) Sketch the wave function to the best of your ability.
Normalize the ground state wave function Ψ0 for the simple harmonic oscillator and find the expectation values (x) and (x 2).
The following Eigen function is a typical solution of the time-independent Schrödinger equation and
satisfies boundary conditions for a particle in a confined space of a certain length.
y(x) = sin
(~77)
(a) Plot the wave function as a function of x for L = 30 cm and n = 1, 2, 3 and 4.
Note: You will need to have 4 plots in the same graph.
(b) On a separate graph, plot the probability density (112) as a function of x using the conditions
specified in part (a). Note: You will need to have 4 plots in the same graph.
(c) Report your observations for parts (a) and (b)
Chapter 7 Solutions
University Physics Volume 3
Ch. 7 - Check Your Understanding If a=3+4i , what is the...Ch. 7 - Check Your Understanding Suppose that a particle...Ch. 7 - Check Your Understanding For the particle in the...Ch. 7 - Check Your Understanding A sodium atom nukes a...Ch. 7 - Check Your Understanding A particle With mass m is...Ch. 7 - Check Your Understanding Which of the following...Ch. 7 - Check your Understanding (a) Consider an infinite...Ch. 7 - Check Your Understanding The vibrational frequency...Ch. 7 - Check Your Understanding Find the expectation...Ch. 7 - Check Your Understanding A proton with kinetic...
Ch. 7 - What is the physical unit of a wave function,...Ch. 7 - Can the magnitude of a wave function (*(x,t)(x,t))...Ch. 7 - What kind of physical quamtity does a wave...Ch. 7 - What is the physical meaning of a wave function of...Ch. 7 - What is the meaning of the expression "expectation...Ch. 7 - If the formalism of quantum mechanics is 'more...Ch. 7 - Can the de Broglie wavelength of a particle be...Ch. 7 - Can we measure the energy of a free localized...Ch. 7 - Can we measure both the position and momentum of a...Ch. 7 - What is the difference between a wave function...Ch. 7 - If a quantum particle is in a stationary state,...Ch. 7 - Explain the difference between time-dependent and...Ch. 7 - Suppose a wave function is discontinuous at some...Ch. 7 - Using the quantum particle in a box model,...Ch. 7 - Is it possible that when we measure the energy of...Ch. 7 - For a quantum panicle in a box, the first excited...Ch. 7 - Is it possible to measure energy of 0.75h for a...Ch. 7 - Explain the connection between Planck's hypothesis...Ch. 7 - If a classical harmonic oscillator can at rest,...Ch. 7 - Use an example of a quantum particle in a box or a...Ch. 7 - Can we simultaneously measure position and energy...Ch. 7 - When an electron and a proton of the same kinetic...Ch. 7 - What decreases the tunneling probability most:...Ch. 7 - Explain the difference between a box-potential and...Ch. 7 - Can a quantum particle 'escape' from an infinite...Ch. 7 - A tunnel diode and a resonant-tunneling diode both...Ch. 7 - Compute |(x,t)|2 for the function (x,t)=(x)sint,...Ch. 7 - Given the complex-valued function...Ch. 7 - Which one of the following functions, and why,...Ch. 7 - A particle with mass m moving along the x-axis and...Ch. 7 - A wave function of a particle with mass m is given...Ch. 7 - A velocity measurement of an a-particle has been...Ch. 7 - A gas of helium atoms at 273 K is in a cubical...Ch. 7 - If the uncertainty in the y -component of a...Ch. 7 - Some unstable elementary particle has a rest...Ch. 7 - An atom in a metastable state has a lifetime of...Ch. 7 - Measurements indicate that an atom remains in an...Ch. 7 - Suppose an electron is confined to a region of...Ch. 7 - Combine Equation 7.17 and Equation 7.18 to show...Ch. 7 - Show that (x,t)=Aei(kwt) is a valid solution to...Ch. 7 - Show that (x,t)=Asin(kxt) and (x,t)=Acos(kxt) do...Ch. 7 - Show that when 1(x,t) and 2(x,t) are solutions to...Ch. 7 - A particle with mass m is described by the...Ch. 7 - Find the expectation value of the kinetic energy...Ch. 7 - Find the expectation value of the square of the...Ch. 7 - A free proton has a wave function given by...Ch. 7 - Assume that an electron in an atom can be treated...Ch. 7 - Assume that a proton in a nucleus can be treated...Ch. 7 - An electron confined to a box has the ground state...Ch. 7 - What is the ground state energy (in eV) of a...Ch. 7 - What is the ground state energy (in eV) of an a...Ch. 7 - To excite an election in a one-dimensional box...Ch. 7 - An electron confined to a box of width 0.15 nm by...Ch. 7 - If the energy of the first excited state of the...Ch. 7 - Suppose an electron confined to a emits photons....Ch. 7 - Hydrogen H2 molecules are kept at 300.0 K in a...Ch. 7 - An electron is confined to a box of width 0.25 nm....Ch. 7 - An electron in a box is in the ground state with...Ch. 7 - Show that the two lowest energy states of the...Ch. 7 - If the ground state energy of a simple harmonic...Ch. 7 - When a quantum harmonic oscillator makes a...Ch. 7 - Vibrations of the hydrogen molecule H2 can be...Ch. 7 - A particle with mass 0.030 kg oscillates back-and-...Ch. 7 - Find the expectation value x2 of the square of the...Ch. 7 - Determine the expectation value of the potential...Ch. 7 - Verify that given by Equation 7.57 is a solution...Ch. 7 - Estimate the ground state energy of the quantum...Ch. 7 - A mass of 0.250 kg oscillates on a spring with the...Ch. 7 - Show that the wave function in (a) Equation 7.68...Ch. 7 - A 6.0-eV electron impacts on a barrier with height...Ch. 7 - A 5.0-eV electron impacts on a barrier of with...Ch. 7 - A 12.0-eV electron encounters a barrier of height...Ch. 7 - A quantum particle with initial kinetic energy...Ch. 7 - A simple model of a radioactive nuclear decay...Ch. 7 - A muon, a quantum particle with a mass...Ch. 7 - A grain of sand with mass 1.0 mg and kinetic...Ch. 7 - Show that if the uncertainty in the position of a...Ch. 7 - The mass of a -meson is measured to be 770MeV/c2...Ch. 7 - A particle of mass m is confined to a box of width...Ch. 7 - A particle in a box [0; L] is in the third excited...Ch. 7 - A 0.20-kg billiard ball bounces back and forth...Ch. 7 - Find the expectation value of the position squared...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Consider an infinite square well with wall...Ch. 7 - Atoms in a crystal lattice vibrate in simple...Ch. 7 - A diatomic molecule behaves like a quantum...Ch. 7 - An electron with kinetic energy 2.0 MeV encounters...Ch. 7 - A beam of mono-energetic protons with energy 2.0...Ch. 7 - An electron in a long, organic molecule used in a...Ch. 7 - In STM, an elevation of the tip above the surface...Ch. 7 - If STM is to detect surface features with local...Ch. 7 - Use Heisenberg's uncertainty principle to estimate...Ch. 7 - Suppose an infinite square well extends from L/2...Ch. 7 - A particle of mass m confined to a box of width L...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the ideal banking angle for a gentle turn of 1.20 km radius on a highway with a 105 km/h speed limit (a...
College Physics
2. The three ropes in FIGURE EX6.2 are tied to a small, very light ring. Two of the ropes are anchored to wa...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
34. (II) An undersea research chamber is spherical with an external diameter of 5.20 m. The mass of the chamber...
Physics: Principles with Applications
If acceleration is proportional to the net force or is equal to net force.
Conceptual Physics (12th Edition)
Eros has an elliptical orbit about the Sun, with a perihelion distance of 1.13 AU and aphelion distance of 1.78...
University Physics Volume 1
4. When a smooth-flowing stream of water comes out of a faucet, it narrows as it falls. Why does it do this?
College Physics (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find the expectation value of the kinetic energy for the particle in the state, (x,t)=Aei(kxt). What conclusion can you draw from your solution?arrow_forwardFind the expectation value x2 of the square of the position for a quantum harmonic oscillator in the ground state. Note: +dxx2ea x 2=(2a 3/2)1.arrow_forwardFind the expectation value of the square of the momentum squared for the particle in the state, (x,t)=Aei(kxt). What conclusion can you draw from your solution?arrow_forward
- Assume that an electron is confined in a one-dimensional quantum well with infinite walls, draw the wave functions for the first 3 levels, ψ1, ψ2, ψ3. Also, show the probability density functions corresponding to these three levels?arrow_forwardConsider the first excited state of the quantum harmonic oscillator (v = 1) and the wavefunction P₁(x), with a = 0.1 m, (a nonphysical but convenient value). a) Show that ₁(x) is normalized.arrow_forwardA particle with zero (total) energy is described by the wavefunction, Ψ(x) =A cos((n?x/L)): −L/4≤ x ≤ L/4 = 0 : elsewhere. Determine the normalization constant A. Calculate the potential energy of the particle. What is the probability that the particle will be found between x= 0 and x=L/8?arrow_forward
- Write the time independent Schrödinger equation for the finite one dimensional potential wellarrow_forwardFind the wave function and its energy by solving the Schrodinger equation below for the three-dimensional box.arrow_forwardUsing the properly normalized wave functions for a particle in an infinite one-dimensional well of width L for the n = 1 state, find the probability that the particle will be found in the region of L/3 to L/2arrow_forward
- A particle of mass m is trapped in a three-dimensional rectangular potential well with sides of length L, L/ √2, and 2L. Inside the box V = 0, outside V = ∞. Assume that Ψ = Asin (k1x) sin (k2y) sin (k3z) inside the well. Substitute this wave function into the Schrödinger equation and apply appropriate boundary conditions to find the allowed energy levels. Find the energy of the ground state and first four excited levels. Which of these levels are degenerate?arrow_forwardSketch a diagram to show a comparison of energy levels and wavefunctions for a quantum particle between a rigid box and a finite square well at the n=1 and n=2.arrow_forwardThe wavefunction for a particle in a box in a three -dimensional potential energy well isΨ (x,yz) = A sin (nxπx/a) (nyπy/b) (nzπz/c)Determine the eigenvalue for the energy.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning