(a)
The value of
(a)
Answer to Problem 67CP
The value of
Explanation of Solution
When the puck is set into circular motion then force applied by the spring must be equal to
Write the expression for force applied by the spring.
Here,
Write the expression for centripetal acceleration.
Here,
Write the expression for r.
Here,
Write the expression for centripetal force.
Here,
Substitute
Write the expression for
Here,
Substitute
Write the expression for conservation of forces.
Substitute
Substitute
Simplify above equation.
Rearrange above equation for
Conclusion:
Thus, the value of
(b)
The value of
(b)
Answer to Problem 67CP
The value of
Explanation of Solution
Conclusion:
Substitute
Thus, the value of
(c)
The value of
(c)
Answer to Problem 67CP
The value of
Explanation of Solution
Conclusion:
Substitute
Thus, the value of
(d)
The value of
(d)
Answer to Problem 67CP
The value of
Explanation of Solution
Conclusion:
Substitute
Thus, The value of
(e)
The value of
(e)
Answer to Problem 67CP
The value of
Explanation of Solution
Conclusion:
Substitute
Thus, the value of
(f)
Pattern of variation of
(f)
Answer to Problem 67CP
The extension of the string
Explanation of Solution
The extension of the string
When the denominator of the fraction goes to zero, then value of
Solve above equation for
Therefore for
Conclusion:
Thus, the extension of the string
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- An inclined plane of angle = 20.0 has a spring of force constant k = 500 N/m fastened securely at the bottom so that the spring is parallel to the surface as shown in Figure P6.61. A block of mass m = 2.50 kg is placed on the plane at a distance d = 0.300 m from the spring. From this position, the block is projected downward toward the spring with speed v = 0.750 m/s. By what distance is the spring compressed when the block momentarily comes to rest?arrow_forwardA particle of mass m moving in one dimension has potential energy U(x) = U0[2(x/a)2 (x/a)4], where U0 and a are positive constants. (a) Find the force F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and unstable equilibrium. (c) What is the angular frequency of oscillations about the point of stable equilibrium? (d) What is the minimum speed the particle must have at the origin to escape to infinity? (e) At t = 0 the particle is at the origin and its velocity is positive and equal in magnitude to the escape speed of part (d). Find x(t) and sketch the result.arrow_forwardA small particle of mass m is pulled to the top of a friction less half-cylinder (of radius R) by a light cord that passes over the top of the cylinder as illustrated in Figure P7.15. (a) Assuming the particle moves at a constant speed, show that F = mg cos . Note: If the particle moves at constant speed, the component of its acceleration tangent to the cylinder must be zero at all times. (b) By directly integrating W=Fdr, find the work done in moving the particle at constant speed from the bottom to the top of the hall-cylinder. Figure P7.15arrow_forward
- Consider the data for a block of mass m = 0.250 kg given in Table P16.59. Friction is negligible. a. What is the mechanical energy of the blockspring system? b. Write expressions for the kinetic and potential energies as functions of time. c. Plot the kinetic energy, potential energy, and mechanical energy as functions of time on the same set of axes. Problems 5965 are grouped. 59. G Table P16.59 gives the position of a block connected to a horizontal spring at several times. Sketch a motion diagram for the block. Table P16.59arrow_forwardIn a laboratory experiment, 1 a block of mass M is placed on a frictionless table at the end of a relaxed spring of spring constant k. 2 The spring is compressed a distance x0 and 3 a small ball of mass m is launched into the block as shown in Figure P11.22. The ball and block stick together and are projected off the table of height h. Find an expression for the horizontal displacement of the ballblock system from the end of the table until it hits the floor in terms of the parameters given. FIGURE P11.22arrow_forwardA student is asked to measure the acceleration of a glider on a frictionless, inclined plane, using an air track, a stopwatch, and a meterstick. The top of the track is measured to be 1.774 cm higher than the bottom of the track, and the length of the track is d = 127.1 cm. The cart is released from rest at the top of the incline, taken as x = 0, and its position x along the incline is measured as a function of time. For x values of 10.0 cm, 20.0 cm, 35.0 cm, 50.0 cm, 75.0 cm, and 100 cm, the measured times at which these positions are reached (averaged over five runs) are 1.02 s, 1.53 s, 2.01 s, 2.64 s, 3.30 s, and 3.75 s, respectively. (a) Construct a graph of x versus t2, with a best-fit straight line to describe the data. (b) Determine the acceleration of the cart from the slope of this graph. (c) Explain how your answer to part (b) compares with the theoretical value you calculate using a = g sin as derived in Example 4.3.arrow_forward
- Consider the track shown in the figure. The section AB is one quadrant of a circle of radius 2.0 mm and is frictionless. B to C is a horizontal span 3.5 mm long with a coefficient of kinetic friction μkμkmu = 0.26. The section CD under the spring is frictionless. A block of mass 1.0 kg is released from rest at A. After sliding on the track, it compresses the spring by 0.35 marrow_forwardTo form a pendulum, a 0.024 kg ball is attached to one end of a rod of length 0.70 m and negligible mass, and the other end of the rod is mounted on a pivot. The rod is rotated until it is straight up, and then it is released from rest so that it swings down around the pivot. When the ball reaches its lowest point, what are (a) its speed and (b) the tension in the rod? Next, the rod is rotated until it is horizontal, and then it is again released from rest. (c) At what angle from the vertical does the tension in the rod equal the weight of the ball? (d) If the mass of the ball is increased, does the answer to (c) increase, decrease, or remain the same? (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardTo form a pendulum, a 0.092 kg ball is attached to one end of a rod of length 0.84 m and negligible mass, and the other end of the rod is mounted on a pivot. The rod is rotated until it is straight up, and then it is released from rest so that it swings down around the pivot. When the ball reaches its lowest point, what are (a) its speed and (b) the tension in the rod? Next, the rod is rotated until it is horizontal, and then it is again released from rest. (c) At what angle from the vertical does the tension in the rod equal the weight of the ball? (d) If the mass of the ball is increased, does the answer to (c) increase, decrease, or remain the same? (a) Number i (b) Number (c) Number (d) Units Units Units #arrow_forward
- A cube of a mass m=0.37 kg is set against a spring with a spring constant of k1=656 N/m which has been compressed by a distance of 0.1 m. Some distance in front of it, along a frictionless surface, is another spring with a spring constant of k2=181N/m. The cube is not connected to the first spring and may slide freely. I found (a) and (b). I just need help with (c). a). How far d2, in meters, will the second spring compress when thee cube runs into it? 0.19 m. (answer) b). How fast v, in meters per second, will the cube be moving when it strikes the second spring? 4.21 m/s (answer) c). Now assume friction is present on the surface in between the ends of the springs at their equilibrium lengths, and the coefficient of kinetic friction is uk=0.5. If the distance between the springs is x=1m, how far d2, in meters, will the second spring now compress?arrow_forwardTo form a pendulum, a 0.092 kg ball is attached to one end of a rod of length 0.62 m and negligible mass, and the other end of the rod is mounted on a pivot. The rod is rotated until it is straight up, and then it is released from rest so that it swings down around the pivot. When the ball reaches its lowest point, what are (a) its speed and (b) the tension in the rod? Next, the rod is rotated until it is horizontal, and then it is again released from rest. (c) At what angle from the vertical does the tension in the rod equal the weight of the ball? (d) If the mass of the ball is increased, does the answer to (c) increase, decrease, or remain the same?arrow_forwardConsider the track shown in the figure. The section AB is one quadrant of a circle of radius 2.0 m and is frictionless. B to C is a horizontal span 3.6 m long with a coefficient of kinetic friction μk = 0.20. The section CD under the spring is frictionless. A block of mass 1.0 kg is released from rest at A. After sliding on the track, it compresses the spring by 0.35 m . (Figure 1) Part A Determine the velocity of the block at point B. Express your answer to two significant figures and include the appropriate units. Part B Determine the thermal energy produced as the block slides from B to C. Express your answer to two significant figures and include the appropriate units. Part C Determine the velocity of the block at point C. Express your answer to two significant figures and include the appropriate units. Part D Determine the stiffness constant kk for the spring. Express your answer to two significant figures and include the appropriate units.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning