
(a)
The spring constant when ball is modelled as a spring.
(a)

Answer to Problem 57AP
The spring constant when ball is modelled as a spring is
Explanation of Solution
As steel ball is modelled as a spring this shows elastic behavior of the ball, so to calculate spring constant Hooke’s law is used.
Write the expression for force applied to the ball.
Here,
Rearrange above equation for
Conclusion:
Substitute
Thus, the spring constant when ball is modelled as a spring is
(b)
The interaction of the ball during the collision.
(b)

Answer to Problem 57AP
The interaction of the ball during the collision is for a nonzero time interval.
Explanation of Solution
The interaction of the ball during the collision is for a time interval because if the interaction of the balls were for instant and not for some time then the force exerted by each ball on the other could be infinite and that is not possible.
Therefore, the interaction is for some time interval.
Conclusion:
Thus, the interaction of the ball during the collision is for a nonzero time interval
(c)
The kinetic energy of each of the balls before they collide .
(c)

Answer to Problem 57AP
The kinetic energy of each of the balls before they collide is
Explanation of Solution
The Kinetic energy for both the balls remains same as they have equal mass and they are moving with the same speed.
Consider iron as the main constituent in the density of steel to calculate mass of the balls.
Write the expression for mass in terms of density.
Here,
Write the expression for volume of sphere.
Here,
Substitute
Write the expression for Kinetic energy.
Here,
Write the expression for radius.
Here,
Substitute
Conclusion:
Substitute
Substitute
Thus, the kinetic energy of each of the balls before they collide is
(d)
The maximum amount of compression each ball undergoes when the balls collide.
(d)

Answer to Problem 57AP
The maximum amount of compression each ball undergoes when the balls collide is
Explanation of Solution
The maximum amount of elastic potential energy each ball has when the balls collide is equal to the kinetic energy they have before collision.
Write the expression for elastic potential energy.
Here,
Write the expression for conservation of energy for this system.
Substitute
Rearrange equation (VI) for
Conclusion:
Substitute
Thus, the maximum amount of compression each ball undergoes when the balls collide is
(e)
The time interval for which the balls are in contact.
(e)

Answer to Problem 57AP
The time interval for which the balls are in contact is nearly
Explanation of Solution
The balls are in contact for a very small time and distance covered by them is the maximum amount of compression the ball undergoes when it collides with the average speed.
Write the expression for average speed of the ball.
Here,
Write the expression for time.
Here,
Conclusion:
Substitute
Substitute
The order of magnitude estimate for time interval is
Thus, the time interval for which the balls are in contact is nearly
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Physics for Scientists and Engineers with Modern Physics, Loose-leaf Version, 9th + WebAssign Printed Access Card, Multi-Term
- From your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?arrow_forwardIn a certain bimetallic strip, the brass strip is 0.100% longer than the steel strip at a temperature of 283°C. At what temperature do the two strips have the same length? Coefficients of linear expansion for steel α = 12.0 × 10−6 K−1 and for brass α = 19.0 × 10−6 K−1 (see Table 13.2).arrow_forwardReview Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe? m = 3 m = 3 m = 0 m = 3 m = 3 Fringes on observation screenarrow_forward
- A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forward
- What is the direction of the magnetic force on a NEGATIVE CHARGE that moves as shown in each of the six cases?arrow_forwardHi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





