COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 66QAP
To determine

(a)

The magnitude and direction of the impulse given to the ball by the bat, if a baseball bat strikes a ball when both are moving at 31.3 m/s (relative to the ground) toward each other. The bat and ball are in contact for 1.20 ms, after which the ball is traveling at a speed of 42.5 m/s, the mass of the bat and the ball are 850 g and 145 g, respectively?

Expert Solution
Check Mark

Answer to Problem 66QAP

The magnitude and direction of the impulse given to the ball by the bat = 10.7 kg m/s along positive x axis.

Explanation of Solution

Given info:

  mbat=850g=0.85kgmball=145g=0.145kgvball,fx=42.5m/svball,ix=31.3m/s

Formula used:

Calculation:

Impulse given to the ball,

  mballΔvball,x=mball(vball,fxvball,ix)=0.145(42.5(31.3))=10.7kgm/s

Conclusion:

The magnitude and direction of the impulse given to the ball by the bat = 10.7 kg m/s along positive x axis.

To determine

(b)

The magnitude and direction of the impulse given to the bat by the ball?

Expert Solution
Check Mark

Answer to Problem 66QAP

The magnitude and direction of the impulse given to the bat by the ball = 10.7 kg m/s along negative x axis.

Explanation of Solution

Given info:

  mbat=850g=0.85kgmball=145g=0.145kgvball,fx=42.5m/svball,ix=31.3m/s

Formula used:

Calculation:

By conservation of momentum equation, we have,

  mbatvbat,ix+mballvball,ix=mbatvbat,fx+mballvball,fxvbat,fx=mbatvbat,ix+mballvball,ixmballvball,fxmbatvbat,fx=0.85×31.3+0.145×(31.3)0.145×42.50.85=18.7m/s

Impulse given to the bat,

  mbatΔvbat,x=mbat(vbat,fxvbat,ix)=0.85(18.7(31.3))=10.7kgm/s

Conclusion:

The magnitude and direction of the impulse given to the bat by the ball = 10.7 kg m/s along negative x axis.

To determine

(c)

What average force does the bat exert on the ball?

Expert Solution
Check Mark

Answer to Problem 66QAP

The average force of the bat on the ball is 8.92×103N in the positive x direction.

Explanation of Solution

Given info:

  mbat=850g=0.85kgmball=145g=0.145kgvball,fx=42.5m/svball,ix=31.3m/sΔt=1.20ms=1.2×103s

Formula used:

Force,

F = Impulse/Time

Calculation:

Average force,

  Favg,x=ΔpΔt=10.71.2×103=8.92×103N

Conclusion:

The average force of the bat on the ball is 8.92×103N in the positive x direction.

To determine

(d)

Why doesn't the force shatter the bat?

Expert Solution
Check Mark

Answer to Problem 66QAP

The force value is 8.92×103N, which is very high. But the contact time is 1.2 ms which is very low. Because of that the bat does not shatter.

Explanation of Solution

Given info:

The average force of the bat on the ball is 8.92×103N in the positive x direction.

Calculation:

The force value is 8.92×103N, which is very high. But the contact time is 1.2 ms which is very low. Because of that the bat does not shatter.

Conclusion:

The force value is 8.92×103N, which is very high. But the contact time is 1.2 ms which is very low. Because of that the bat does not shatter.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. A powerful motorcycle can produce an acceleration of 3.50 m/s² while traveling at 90.0 km/h. At that speed the forces resisting motion, including friction and air resistance, total 400 N. (Air resistance is analogous to air friction. It always opposes the motion of an object.) What force does the motorcycle exert backward on the ground to produce its acceleration if the mass of the motorcycle with rider is 245 kg? (10 pts) a = 3.50 m/s 2 distance 90 km/h = 3.50m/62 M = 245g
Using Table 17-4, determine the approximate temperature of metal that has formed a dark blue color.
A positively charged disk has a uniform charge per unit area σ. dq R P x The total electric field at P is given by the following. Ek [2 - x (R² + x2) 1/2 Sketch the electric field lines in a plane perpendicular to the plane of the disk passing through its center.

Chapter 7 Solutions

COLLEGE PHYSICS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY