
Structural Analysis, Si Edition (mindtap Course List)
6th Edition
ISBN: 9781337630948
Author: KASSIMALI, Aslam
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 66P
To determine
Find the horizontal deflection at joint C of the frame using Castigliano’s second theorem.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
“When a conflict exists between the project floor plans and detailed material schedule relative to size or number, which of the following usually governs in typical order of precedence?
What are the critical activities
Approximately how many pounds of water are necessary to hydrate 100 pounds of type I Portland cement?
30
50
75
94
Chapter 7 Solutions
Structural Analysis, Si Edition (mindtap Course List)
Ch. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10P
Ch. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Prob. 68PCh. 7 - Prob. 69P
Knowledge Booster
Similar questions
- 7:05 3.1 Trabajo en clase.pptx .III LTE 8 Trabajo en clases 3.1 C9 X 20 W8 X 21 5-15. PL¹× 12 Fy = 50 klb/plg² KL = 16 pies KL 21 pies 2 plg MC 13 × 50 PL × 12 Fy = 42 klb/plg2 Fy = 36 klb/plg² 8 plg K k MC8 × 21.4 KL = 20 piesarrow_forwardThe steel frameword below is used to support the reinforced concrete slab used for an office area above the first storey. The slab is 210 mm thick. Sketch the loading that acts along members BE and FED. Use a = 2.15 m and b = 5.25 m. Refer to the 2024 OBC live load table. The unit weight for the concrete is 24.15 kN/m3.find:Loading for member BE Loading for member FED Live and Dead Loadsarrow_forwardFor the simply supported beam below, draw both the shear force (VFD) and ending moment (BDM) diagrams. Please show all equations and free body diagrams (FBD). Note: I want a cut through each of the three sections of the beam, with all related forces calculated and shown on the VFD and BMD.Reaction Forces Shear Force DiagramMaximum Shear ForceEquation for cut 1, 2, 3 respectively.Confirmation of Reaction ForcesBending Moment DiagramMaximum Bending Momentarrow_forward
- For the structural frame below, draw the shear force (VFD) and bending moment (BMD) diagrams for each of the three members of the frame. The frame is pin connected at A, C and D and fixed at joint B.Find:VFD & BMD for segment AB VFD & BMD for segment BCVFD & BMD for segment CD Reaction Forces VFD Equations BMD EquationsFree Body Diagramsarrow_forwardDetermine the horizontal and vertical reactions at A and C for the two member frame below. Use P1 = 3.2 kN, P2 = 14.5 kN/m, L1 = 3.3 m, and L2 = 2.3 m. Free Body DiagramsTriangular Load Use of Pin Reaction Forcesarrow_forwardDetermine the reaction forces at supports A and C for the compound beam. Assume C is fixed, B is a pin, and A is a roller. Use P1 = 16 kN/m, P2 = 21 kN, L1 = 3.5 m, L2 = 1.5 m, and L3 – 1.5 m. needs:Triangular Load Use of Pin Reaction Forcesfree body diagramsarrow_forward
- Determine all displacement components and internal reactions at node 2 using the stiffness method. Assume I = 300(10^6) mm4, A = 10(10^3) mm2, E = 200 GPa for each member. Use the values of L3=2.5m, L4=4.5m, w=12kN/m and P=10kN.arrow_forwardDraw the BMD of the frame on the compression side showing all salient values using the stifness method. Assume I = 300(10^6) mm4, A = 10(10^3) mm2, E = 200 GPa for each member. Use the values of L3=2.5m, L4=4.5m, w=12kN/m and P=10kN. Please show all workingarrow_forwardSchool of I- I- 30 ft C1 B1 B2 E G1 4 @ 8 ft Floor 13 Span C3 G2 4 @ 8 ft -I- 30 ft 1. Calculate the dead load, wp (kip/ft), applied to beam B2 based on tributary load analysis for the given loads and floor span direction. In addition to the weight of concrete, include an additional 25 psf dead load (total of fixed partitions, HVAC, and drop ceiling). Neglect the beam self-weight and the weight of the corrugated steel sheet metal. 2. Draw an FBD of beam B2 showing the calculated dead load, wp, and support reactions. 3. Report the maximum bending moment (kip-ft) in beam B2 due to dead load. 4. What is the minimum uniform live load, L. (psf), for this occupancy? 5. Calculate the live load, WL (kip/ft), applied to beam B2 based on tributary load analysis for the occupancy and floor span direction. 6. Draw an FBD of beam B2 showing the calculated live load, wL, and reactions 7. Report the maximum bending moment (kip-ft) in beam B2 due to live load. 8. Is live load reduction allowed for…arrow_forward
- P10.7 WP For the simply supported steel beam [E = 200 GPa; I = 129 × 106 mm²] shown in Figure P10.7, use the double-integration method to determine the deflection at B. Assume that L = 4 m, P = 60 kN, and w = 40 kN/m. A B FIGURE P10.7 Warrow_forwardWhen calculating the minimum force P required to prevent motion of the wheel....What is the angle beta to be used in the equation for belt frictionwhen working with this system?Which tension would be T2?arrow_forward4.5m 4.5m 4.5m 20 4m A- Intermediate flat plate floor, story height=2.75 m, t=190 mm, f'c=20 MPa for slabs and f'c=35 MPa for columns. All columns are 400×400mm. Find all DF for the interior equivalent frame shown. 6m 6marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
