Structural Analysis
Structural Analysis
6th Edition
ISBN: 9781337630931
Author: KASSIMALI, Aslam.
Publisher: Cengage,
bartleby

Concept explainers

Question
Book Icon
Chapter 7, Problem 64P
To determine

Find the slope and deflection at point D of the beam using Castigliano’s second theorem.

Expert Solution & Answer
Check Mark

Answer to Problem 64P

The slope at point D of the beam is 0.0071rad_ acting in the clockwise direction.

The deflection at point D of the beam is 0.62in._.

Explanation of Solution

Given information:

The beam is given in the Figure.

Value of E is 30,000 ksi, I is 4,000in.4 for span AB, and 3,000in.4 for span BD.

Apply the sign conventions for calculating reactions, forces and moments using the three equations of equilibrium as shown below.

  • For summation of forces along x-direction is equal to zero (Fx=0), consider the forces acting towards right side as positive (+) and the forces acting towards left side as negative ().
  • For summation of forces along y-direction is equal to zero (Fy=0), consider the upward force as positive (+) and the downward force as negative ().
  • For summation of moment about a point is equal to zero (Matapoint=0), consider the clockwise moment as negative and the counter clockwise moment as positive.

Calculation:

Let apply a load P and couple M¯ at point D in the desired direction to find the deflection and slope.

The value of load P is 35 k and couple M¯ is zero.

Sketch the beam with load P and couple M¯ as shown in Figure 1.

Structural Analysis, Chapter 7, Problem 64P

Let the equation for bending moment at distance x in terms of load P be M, the derivative of M with respect to P is MP.

The derivative of M with respect to M¯ is MM¯.

Find the reactions and moment at the supports:

Consider portion BCD, Summation of moments about B is equal to 0.

MB=08CyP(16)M¯=08Cy=16P+M¯Cy=2P+M¯8

Summation of forces along y-direction is equal to 0.

+Fy=0Ay+Cy2.5(16)P=0Ay+2P+M¯82.5(16)P=0Ay=40PM¯8

Summation of moments about A is equal to 0.

MA=0MAP(32)M¯+Cy(24)2.5(16)(162)=0MA32PM¯+48P+3M¯320=0MA=32016P2M¯

Find the equations for M, MM¯, and MP for the 3 segments of the beam as shown in Table 1.

Segmentx-coordinateMMM¯MP
OriginLimits (ft)
DCD08PxM¯1x
CBD816PxM¯+(2P+M¯8)(x8)1+18(x8)x16
ABA016(32016P2M¯)+(40PM¯8)x1.25x22x816x

The expression for slope at D using Castigliano’s second theorem (θD) is shown as follows:

θD=0L(MM¯)MEIdx (1)

Here, L is the length of the beam.

Rearrange Equation (1) for the limits 08, 816, and 016 as follows.

θD=1E[1I08(MM¯)Mdx+1I816(MM¯)Mdx+1I016(MM¯)Mdx]

Substitute the value of load P as 35 k and couple M¯ as 0 in the column 4 of Table 1.

Substitute 1 for MM¯, 35x for M for the limit 08, 1+18(x8) for MM¯, 35x+70(x8) for M for the limit 816, 2x8 for MM¯, 4I3 for I, and 240+5x1.25x2 for M for the limit 016.

θD=1E[1I08(1)(35x)dx+1I816(1+18(x8))(35x+70(x8))dx+143I016(2x8)(240+5x1.25x2)dx]=1E[1I08(35x)dx+1I816(70x140x+1,12035x28+70x28560x8)dx+34I016(480+10x2.5x2240x85x28+1.25x38)dx]=1EI[(35x22)08+(140x22+1,120x+4.375x33)816+34(480x20x223.125x33+1.25x432)08]=4,426.67k-ft2EI

Substitute 30,000ksi for E and 3,000in.4 for I.

θD=4,426.67k-ft2(30,000ksi)(3,000in.4)=4,426.67k-ft2×122in21ft2(30,000ksi)(3,000in.4)=0.0071rad

Therefore, the slope at point D of the beam is 0.0071rad_ acting in the clockwise direction.

The expression for deflection at D using Castigliano’s second theorem (ΔD) is shown as follows:

ΔD=0L(MP)MEIdx (2)

Here, L is the length of the beam.

Rearrange Equation (2) for the limits 08, 816, and 016 as follows.

ΔD=1EI[08(MP)Mdx+816(MP)Mdx+016(MP)Mdx]

Substitute x for MP, 35x for M for the limit 08, x16 for MP, 35x+70(x8) for M for the limit 816, 16x for MP, 4I3 for I, and 240+5x1.25x2 for M for the limit 016.

ΔD=1E[1I08(x)(35x)dx+1I816(x16)(35x+70(x8))dx+143I016(16x)(240+5x1.25x2)dx]=1E[1I08(35x2)dx+1I816(35x2+70x2560x+560x1,120x+8,960)dx+34I016(3,840+80x20x2240x5x2+1.25x3)dx]=1E[1I08(35x2)dx+1I816(350x21,120x+8,960)dx+34I016(3,840160x25x2+1.25x3)dx]=1EI[(35x33)08+(350x331,120x22+8,960x)816+34(3,840x160x2225x33+1.25x44)08]

ΔD=32,426.67k-ft3EI

Substitute 30,000ksi for E and 3,000in.4 for I.

ΔD=32,426.67k-ft3(30,000ksi)(3,000in.4)=32,426.67k-ft3×123in31ft3(30,000ksi)(3,000in.4)=0.62in.

Therefore, the deflection at point D of the beam is 0.62in._.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For the setups (Case I and Case II) shown below calculate the Total and Pressure Heads at points A, B, and C. Also, determine the hydraulic gradient and pore water pressure at A. Note: Dotted area is a homogeneous soil. 5 m 1 m Datum 5 m 1m 3 m Case I י. 5 4m- C Case II 1 m D Datum
The following data is representative of that reported in an article on nitrogen emissions, with x = burner area liberation rate (MBtu/hr-ft²) and y = NOx emission rate (ppm): x 100 125 125 150 150 200 200 250 250 300 300 350 400 400 140 150 180 210 180 310 270 400 420 430 400 600 600 660 (a) Assuming that the simple linear regression model is valid, obtain the least squares estimate of the true regression line. (Round all numerical values to four decimal places.) y = (b) What is the estimate of expected NOx emission rate when burner area liberation rate equals 245? (Round your answer to two decimal places.) ppm (c) Estimate the amount by which you expect NO emission rate to change when burner area liberation rate is decreased by 50. (Round your answer to two decimal places.) ppm (d) Would you use the estimated regression line to predict emission rate for a liberation rate of 500? Why or why not? Yes, the data is perfectly linear, thus lending to accurate predictions. Yes, this value is…
5.25 Water from a pipe is diverted into a weigh tank for exactly 1 min. The increased weight in the tank is 80 kN. What is the discharge in cubic meters per second? Assume T = 20°C.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,