(a)
The total momentum of the system prior to the collision.
(a)
Answer to Problem 5SP
The total momentum of the system prior to the collision is
Explanation of Solution
Given info: The mass of the car is
Write the expression for total momentum of the system prior to the collision.
Here,
Substitute
Conclusion:
Therefore, the total momentum of the system prior to the collision is
(b)
The velocity of the two vehicles just after the collision.
(b)
Answer to Problem 5SP
The velocity of the two vehicles just after the collision is
Explanation of Solution
Total momentum before collision is equal to the total momentum after collision according to the principle of conservation of momentum.
Write the expression to find the velocity of the two vehicles just after collision.
Substitute
Conclusion:
Therefore the velocity of the two vehicles just after the collision is
(c)
The total kinetic energy of the system before collision.
(c)
Answer to Problem 5SP
The total kinetic energy of the system before collision is
Explanation of Solution
Write the expression to find the kinetic energy of the system before collision.
Here,
Substitute
Conclusion:
Therefore the total kinetic energy of the system before collision is
(d)
The total kinetic energy of the system just after collision.
(d)
Answer to Problem 5SP
The total kinetic energy of the system just after collision is
Explanation of Solution
Write the expression to find the total kinetic energy of the system just after collision.
Here,
Substitute
Conclusion:
Therefore, the total kinetic energy of the system just after collision is
(e)
Whether the collision is elastic.
(e)
Answer to Problem 5SP
The collision is not elastic.
Explanation of Solution
Elastic collision is associated with no change in the kinetic energy. This implies for an elastic collision to occur, there should be no change in the kinetic energy before and after collision or the kinetic energy should be conserved.
In the given situation the vehicles stick together after collision. The total kinetic energy before collision is
Conclusion:
Thus, the collision is not elastic.
Want to see more full solutions like this?
Chapter 7 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- ་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- A spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forwardsolve and answer the problem correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON