
(a)
The change in momentum of the baseball during the process.
(a)

Answer to Problem 1SP
The change in momentum of the baseball during the process is
Explanation of Solution
Given info: The velocity of the ball before coming in contact with the bat is
Take initial direction of motion of the baseball to be positive.
Write the expression to find the initial momentum of the baseball.
Here,
Substitute
Write the expression to find the final momentum of the baseball.
Here,
Substitute
The negative sign is due to the fact that the final momentum is in negative direction.
Write the expression for change in momentum of the baseball.
Here,
Substitute
Conclusion:
Therefore, the change in momentum of the baseball during the process is
(b)
Whether the change in momentum is greater than the final momentum.
(b)

Answer to Problem 1SP
Yes, the change in momentum is greater than the final momentum.
Explanation of Solution
Linear momentum is the product of mass of an object and its velocity. It was called as the change in quantity of the motion. It is a vector and it has the same direction as that of velocity.
The change in momentum is found by taking the difference between the initial and the final values of momentum. If the change in momentum is greater than final momentum it must mean that the initial and final momentum have opposite directions.
The change in momentum is found to be
Conclusion:
Therefore, the change in momentum is greater than the final momentum.
(c)
The magnitude of impulse required to make the change in momentum.
(c)

Answer to Problem 1SP
The magnitude of impulse required to make the change in momentum is
Explanation of Solution
Given info: The change in momentum experienced by the baseball is
Write the expression for relation connecting the impulse and change in momentum of the baseball.
Substitute
Conclusion:
Therefore, the magnitude of impulse required to make the change in momentum is
(d)
The magnitude of average force that acts on the baseball to produce the impulse.
(d)

Answer to Problem 1SP
The magnitude of average force that acts on the baseball to produce the impulse is
Explanation of Solution
Write the expression for the impulse associated with the ball.
Here,
Rewrite the above equation for
Substitute
Conclusion:
Therefore, the magnitude of average force that acts on the baseball to produce the impulse is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK PHYSICS OF EVERYDAY PHENOMENA
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- Discuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forwardExplain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forward
- A 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forwardFor each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





