
A 1600-kg car traveling due east with a speed of 30 m/s collides head-on with a 4800-kg truck traveling due west with a speed of 15 m/s. The two vehicles stick together after the collision.
- a. What is the total momentum of the system prior to the collision?
- b. What is the velocity of the two vehicles just after the collision?
- c. What is the total kinetic energy of the system before the collision?
- d. What is the total kinetic energy just after the collision?
- e. Is the collision elastic? Explain.
(a)

The total momentum of the system prior to the collision.
Answer to Problem 5SP
The total momentum of the system prior to the collision is
Explanation of Solution
Given info: The mass of the car is
Write the expression for total momentum of the system prior to the collision.
Here,
Substitute
Conclusion:
Therefore, the total momentum of the system prior to the collision is
(b)

The velocity of the two vehicles just after the collision.
Answer to Problem 5SP
The velocity of the two vehicles just after the collision is
Explanation of Solution
Write the expression to find the velocity of the two vehicles just after collision.
Substitute
Conclusion:
Therefore, the velocity of the two vehicles just after the collision is
(c)

The total kinetic energy of the system before collision.
Answer to Problem 5SP
The total kinetic energy of the system before collision is
Explanation of Solution
Write the expression to find the kinetic energy of the system before collision.
Here,
Substitute
Conclusion:
Therefore, the total kinetic energy of the system before collision is
(d)

The total kinetic energy of the system just after collision.
Answer to Problem 5SP
The total kinetic energy of the system just after collision is
Explanation of Solution
Write the expression to find the total kinetic energy of the system just after collision.
Here,
Substitute
Conclusion:
Therefore, the total kinetic energy of the system just after collision is
(e)

Whether the collision is elastic.
Answer to Problem 5SP
No, the collision is not elastic.
Explanation of Solution
Elastic collision associates with it no change in the kinetic energy, that means for an elastic collision to occur, there should be no change in the kinetic energy before and after collision should be same.
When the vehicles stick together after collision, the kinetic energy before and after collision are the same. This results in inelastic collision case. Thus the head on collision of a car and truck is in elastic in nature since after the collision, they stick together.
Conclusion:
Therefore, the collision is not elastic.
Want to see more full solutions like this?
Chapter 7 Solutions
Physics of Everyday Phenomena
- Considering the cross-sectional area shown in Fig.2: 1. Determine the coordinate y of the centroid G (0, ỹ). 2. Determine the moment of inertia (I). 3. Determine the moment of inertia (Ir) (with r passing through G and r//x (// parallel). 4 cm 28 cm G3+ G 4 cm y 12 cm 4 cm 24 cm xarrow_forwardI need help understanding 7.arrow_forwardThe stress-strain diagram for a steel alloy is given in fig. 3. Determine the modulus of elasticity (E). σ (ksi) 40 30 20 10 0 0 0.0005 0.001 0.0015 0.002 0.0025 0.0030.0035 Earrow_forward
- A Van de Graff generator, if the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other using Coulomb's Law to calculate the electrical force. Give your answer as the number of Coulombsarrow_forwardPlease help me answer the following question. I am having trouble understanding the directions of the things the question is asking for. Please include a detailed explanation and possibly drawings of the directions of Bsource, Binduced, and Iinduced.arrow_forward43. A mass må undergoes circular motion of radius R on a hori- zontal frictionless table, con- nected by a massless string through a hole in the table to a second mass m² (Fig. 5.33). If m₂ is stationary, find expres- sions for (a) the string tension and (b) the period of the circu- lar motion. m2 R m₁ FIGURE 5.33 Problem 43arrow_forward
- CH 70. A block is projected up an incline at angle 0. It returns to its initial position with half its initial speed. Show that the coefficient of ki- netic friction is μk = tano.arrow_forwardPassage Problems A spiral is an ice-skating position in which the skater glides on one foot with the other foot held above hip level. It's a required element in women's singles figure-skating competition and is related to the arabesque performed in ballet. Figure 5.40 shows Canadian skater Kaetlyn Osmond executing a spiral during her medal-winning perfor- mance at the 2018 Winter Olympics in Gangneung, South Korea. 77. From the photo, you can conclude that the skater is a. executing a turn to her left. b. executing a turn to her right. c. moving in a straight line out of the page. 78. The net force on the skater a. points to her left. b. points to her right. c. is zero. 79. If the skater were to execute the same maneuver but at higher speed, the tilt evident in the photo would be a. less. b. greater. c. unchanged. FIGURE 5.40 Passage Problems 77-80 80. The tilt angle 0 that the skater's body makes with the vertical is given ap- proximately by 0 = tan¯¹(0.5). From this you can conclude…arrow_forwardFrictionless surfarrow_forward
- 71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





