A bullet is fired into a block of wood sitting on a block of ice. The bullet has an initial velocity of 800 m/s and a mass of 0.007 kg. The wooden block has a mass of 1.3 kg and is initially at rest. The bullet remains embedded in the block of wood afterward.
- a. Assuming that momentum is conserved, find the velocity of the block of wood and bullet after the collision.
- b. What is the magnitude of the impulse that acts on the block of wood in this process?
- c. Does the change in momentum of the bullet equal that of the block of wood? Explain.
(a)
The velocity of the block of wood and bullet after collision.
Answer to Problem 2SP
The velocity of the block of wood and bullet after collision is
Explanation of Solution
Given info: The initial velocity of the bullet is
Write the expression for conservation of momentum.
Here,
Write the expression to find the initial momentum of the bullet.
Here,
Substitute
Write the expression to find the final momentum of the bullet and the wooden block.
Here,
Substitute
Write the expression for conservation of momentum.
Substitute
Conclusion:
Therefore, the velocity of the block of wood and bullet after collision is
(b)
The magnitude of the impulse that acts on the block of the wood.
Answer to Problem 2SP
The magnitude of the impulse that acts on the block of the wood is
Explanation of Solution
Write the expression for the final momentum of the wooden block.
Substitute
Write the expression for change in momentum of the wooden block.
Substitute
Write the expression of the impulse associated with the change in momentum.
Here,
Substitute
Conclusion:
Therefore, the magnitude of the impulse that acts on the block of the wood is
(c)
Whether the change in momentum of the bullet is equal to that of the block of the wood.
Answer to Problem 2SP
Yes, the magnitude of change in momentum of the bullet is equal to that of the block of the wood.
Explanation of Solution
Since the motion of the wooden block is due to the momentum imparted by the bullet, the magnitude of the change in momentum of the bullet is same as the change in momentum associated with the block of wood. The direction is opposite which facilitates the momentum conservation before and after the collision.
Conclusion:
Therefore, the magnitude of change in momentum of the bullet is equal to that of the block of the wood.
Want to see more full solutions like this?
Chapter 7 Solutions
Physics of Everyday Phenomena
- 1.62 On a training flight, a Figure P1.62 student pilot flies from Lincoln, Nebraska, to Clarinda, Iowa, next to St. Joseph, Missouri, and then to Manhattan, Kansas (Fig. P1.62). The directions are shown relative to north: 0° is north, 90° is east, 180° is south, and 270° is west. Use the method of components to find (a) the distance she has to fly from Manhattan to get back to Lincoln, and (b) the direction (relative to north) she must fly to get there. Illustrate your solutions with a vector diagram. IOWA 147 km Lincoln 85° Clarinda 106 km 167° St. Joseph NEBRASKA Manhattan 166 km 235° S KANSAS MISSOURIarrow_forwardPlz no chatgpt pls will upvotearrow_forward3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi- raffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal dis- tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand? (b) What is the vertical component of the velocity of the quarter just before it lands in the dish? Figure E3.19 6.4 m/s 2.1arrow_forward
- Can someone help me answer this thank you.arrow_forward1.21 A postal employee drives a delivery truck along the route shown in Fig. E1.21. Determine the magnitude and direction of the resultant displacement by drawing a scale diagram. (See also Exercise 1.28 for a different approach.) Figure E1.21 START 2.6 km 4.0 km 3.1 km STOParrow_forwardhelp because i am so lost and it should look something like the picturearrow_forward
- 3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College