Elements Of Electromagnetics
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 57P

(a)

To determine

Prove that the curl of the gradient function ×(V)=0 in cylindrical coordinates.

(a)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

The Del operator in a cylindrical coordinates is expressed as,

=ρaρ+1ρϕaϕ+zaz

The function V is expressed as,

V=(Vρaρ+1ρVϕaϕ+Vzaz)

Therefore, the function ×(V) is,

×(V)=1ρ|aρρaϕazρϕzVρρ(1ρVϕ)Vz|=1ρ|aρρaϕazρϕzVρVϕVz|

×(V)=1ρ[(ϕ(Vz)z(Vϕ))aρ(ρ(Vz)z(Vρ))ρaϕ+(ρ(Vϕ)ϕ(Vρ))az]        (1)

The point of interchange of base values of the partial derivatives gives the same values. That is,

ϕ(Vz)=z(Vϕ)ρ(Vz)=z(Vρ)ρ(Vϕ)=ϕ(Vρ)

Therefore, the Equation (1) is re-written as follows,

×(V)=1ρ[(ϕ(Vz)ϕ(Vz))aρ(ρ(Vz)ρ(Vz))ρaϕ+(ρ(Vϕ)ρ(Vϕ))az]=1ρ[(0)aρ(0)ρaϕ+(0)az]=0

Conclusion:

Thus, the curl of the gradient function ×(V)=0 in cylindrical coordinates and it is shown.

(b)

To determine

Prove that the divergence of the curl function (×A)=0 in cylindrical coordinates.

(b)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

The function ×A is expressed as,

×A=1ρ|aρρaϕazρϕzAρρAϕAz|=1ρ[(ϕ(Az)z(ρAϕ))aρ(ρ(Az)z(Aρ))ρaϕ+(ρ(ρAϕ)ϕ(Aρ))az]=[1ρ(Azϕ(ρAϕ)z)aρ1ρ(AzρAρz)ρaϕ+1ρ((ρAϕ)ρAρϕ)az]=[1ρ(Azϕ(ρAϕ)z)aρ(AzρAρz)aϕ+1ρ((ρAϕ)ρAρϕ)az]

Therefore, the function (×A) is,

(×A)=(ρaρ+1ρϕaϕ+zaz)[1ρ(Azϕ(ρAϕ)z)aρ(AzρAρz)aϕ+1ρ((ρAϕ)ρAρϕ)az]=[ρ(1ρ(Azϕ(ρAϕ)z))aρaρ0+0+0(1ρϕ(AzρAρz))aϕaϕ+0+00+(z(1ρ((ρAϕ)ρAρϕ)))azaz] {aρaϕ=0aρaz=0aϕaz=0}=[ρ(1ρ(Azϕ(ρAϕ)z))(1ρϕ(AzρAρz))+(z(1ρ((ρAϕ)ρAρϕ)))] {aρaρ=0aϕaϕ=0azaz=0}=[ρ(1ρAzϕAϕz)(1ρϕ(AzρAρz))+(z(1ρ(ρAϕ)ρ1ρAρϕ))]

Simplify the above equation.

(×A)=[ρ(1ρAzϕ)ρ(Aϕz)1ρϕ(Azρ)+1ρϕ(Aρz)+z(1ρ(ρAϕ)ρ)z(1ρAρϕ)]

(×A)=[1ρρ(Azϕ)ρ(Aϕz)1ρϕ(Azρ)+1ρϕ(Aρz)+z(Aϕρ)1ρz(Aρϕ)]        (2)

The point of interchange of base values of the partial derivatives gives the same values. That is,

ρ(Azϕ)=ϕ(Azρ)ρ(Aϕz)=z(Aϕρ)ϕ(Aρz)=z(Aρϕ)

Therefore, the Equation (2) is re-written as follows,

(×A)=[1ρρ(Azϕ)ρ(Aϕz)1ρρ(Azϕ)+1ρϕ(Aρz)+ρ(Aϕz)1ρϕ(Aρz)]=0

Conclusion:

Thus, the divergence of the curl function (×A)=0 in cylindrical coordinates and it is shown.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY