Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 57AP

(a)

To determine

The spring constant when ball is modelled as a spring.

(a)

Expert Solution
Check Mark

Answer to Problem 57AP

The spring constant when ball is modelled as a spring is 8×107N/m.

Explanation of Solution

As steel ball is modelled as a spring this shows elastic behavior of the ball, so to calculate spring constant Hooke’s law is used.

Write the expression for force applied to the ball.

    F=kx

Here, F is the force applied to the ball, k is spring constant and x is compression in the ball.

Rearrange above equation for k .

    k=Fx                                                                                                             (I) 

Conclusion:

Substitute 16kN for F and 0.2mm for x in equation (I).

    k=(16kN)(1000N1kN)(0.2mm)(1m1000mm)=8×107N/m

Thus, the spring constant when ball is modelled as a spring is 8×107N/m.

(b)

To determine

The interaction of the ball during the collision.

(b)

Expert Solution
Check Mark

Answer to Problem 57AP

The interaction of the ball during the collision is for a nonzero time interval.

Explanation of Solution

The interaction of the ball during the collision is for a time interval because if the interaction of the balls were for instant and not for some time then the force exerted by each ball on the other could be infinite and that is not possible.

Therefore, the interaction is for some time interval.

Conclusion:

Thus, the interaction of the ball during the collision is for a nonzero time interval

(c)

To determine

The kinetic energy of each of the balls before they collide .

(c)

Expert Solution
Check Mark

Answer to Problem 57AP

The kinetic energy of each of the balls before they collide is 0.8J.

Explanation of Solution

The Kinetic energy for both the balls remains same as they have equal mass and they are moving with the same speed.

Consider iron as the main constituent in the density of steel to calculate mass of the balls.

Write the expression for mass in terms of density.

    m=ρV                                                                                                        (II)

Here, m is the mass of the steel ball, ρ is the density of steel and V is the volume of ball i.e. sphere.

Write the expression for volume of sphere.

    V=43πr3

Here, r is radius of the sphere.

Substitute 43πr3 for V in equation (II).

    m=43ρπr3                                                                                                  (III)

Write the expression for Kinetic energy.

    K=12mv2                                                                                                   (IV)

Here, v is the speed of the ball before collision.

Write the expression for radius.

    r=D2

Here, D is the diameter and r is the radius.

Substitute D2 for r in equation(III).

    m=ρ43π(D2)3                                                                                           (V)

Conclusion:

Substitute  7860kg/m3 for ρ and 25.4mm for D in equation (V).

    m=(7860kg/m3)43π((25.4mm)(1m1000mm)2)3=(7860kg/m3)(4π)(0.0254)324=0.0674kg

Substitute 0.0674kg for m and 5m/s for v in equation (IV).

    K=12(0.0674kg)(5m/s)2=0.843J0.8J

Thus, the kinetic energy of each of the balls before they collide is 0.8J.

(d)

To determine

The maximum amount of compression each ball undergoes when the balls collide.

(d)

Expert Solution
Check Mark

Answer to Problem 57AP

The maximum amount of compression each ball undergoes when the balls collide is 0.15mm.

Explanation of Solution

The maximum amount of elastic potential energy each ball has when the balls collide is equal to the kinetic energy they have before collision.

Write the expression for elastic potential energy.

    Us=12kx2

Here, Us is the elastic potential energy.

Write the expression for conservation of energy for this system.

    K=Us

Substitute 12kx2 for Us in above equation.

    K=12kx2                                                                                                   (VI)

Rearrange equation (VI) for x .

    x=2Kk                                                                                               (VII)

Conclusion:

Substitute 0.843J for K and 8×107N/m for k in equation (VII).

    x=2(0.843J)(8×107N/m)=(1.45×104m)(1000mm1m)=0.145mm0.15mm

Thus, the maximum amount of compression each ball undergoes when the balls collide is 0.15mm.

(e)

To determine

The time interval for which the balls are in contact.

(e)

Expert Solution
Check Mark

Answer to Problem 57AP

The time interval for which the balls are in contact is nearly 104s.

Explanation of Solution

The balls are in contact for a very small time and distance covered by them is the maximum amount of compression the ball undergoes when it collides with the average speed.

Write the expression for average speed of the ball.

    vavg=vi+vf2                                                                                            (VIII)

Here, vavg is the average speed, vi is the initial speed by which they collide and vf is the final speed that is zero as they momentarily comes at rest.

Write the expression for time.

    t=xvavg                                                                                                        (IX)

Here, t is the time interval and x is the maximum compression.

Conclusion:

Substitute 5m/s for vi and 0 for vf in equation (VIII).

    vavg=5m/s+02=2.5m/s

Substitute 2.5m/s for vavg and 0.15mm for x .

    t=0.15mm(1m1000mm)2.5m/s=6×105s

The order of magnitude estimate for time interval is 104s .

Thus, the time interval for which the balls are in contact is nearly 104s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Puck A and puck B are free to slide without friction on a horizontal air table; the mass of puck A has been measured to be 135.0 grams, but the mass of puck B is unknown. The pucks are made of super-ball like material, so any collision between them should be elastic. An experiment is done with puck B at rest at the center of the air table, and with puck A sent at 71.0 cm/s to make a glancing collision with puck B. After the collision, puck A is measured to have a speed of 31.0 cm/s, and is observed to have been deflected by 31.0 degrees from its original direction. For the purpose of answering the following questions, choose an zy coordinate system, with the positive direction being the original direction of puck A. Choose the positive y direction so that they component of the final velocity (i.e. after the collision) of puck A is positive. ▼ ▼ Part A What was the component of puck B's momentum after the collision? Give the component of momentum, with the positive direction as…
Two people want to do a physics experiment at the bowling alley. They set up sensors to measure velocities and then roll two bowling balls with different masses so that they hit head on and collide elastically. The table summarizes the values known for the collision. Given the information, what is the mass of ball 2?   Ball 1 Ball 2 mass (kg) 5.05.0 ?? initial velocity (m/s) 7.07.0 −3.0−3.0 final velocity (m/s) −7.74−7.74 2.262.26
Two blocks (m₁ and m2) are released from rest at a height of h= 14.00 m on a rough track. The friction force 2.6 N acts on distance of 2.59 m along the track. The two objects meet on the horizontal section of the track where they undergo an elastic collision. If m1 = 4.09 kg and m2 = 7.93 kg, determine the velocity (in m/s) of object 2 before collision.

Chapter 7 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 7 - Prob. 3OQCh. 7 - A cart is set rolling across a level table, at the...Ch. 7 - Let N represent the direction horizontally north,...Ch. 7 - Prob. 6OQCh. 7 - Prob. 7OQCh. 7 - As a simple pendulum swings back and forth, the...Ch. 7 - Bullet 2 has twice the mass of bullet 1. Both are...Ch. 7 - Prob. 10OQCh. 7 - If the speed of a particle is doubled, what...Ch. 7 - Prob. 12OQCh. 7 - Prob. 13OQCh. 7 - A certain spring that obeys Hookes law is...Ch. 7 - A cart is set rolling across a level table, at the...Ch. 7 - Prob. 16OQCh. 7 - Can a normal force do work? If not, why not? If...Ch. 7 - Object 1 pushes on object 2 as the objects move...Ch. 7 - Prob. 3CQCh. 7 - (a) For what values of the angle u between two...Ch. 7 - Prob. 5CQCh. 7 - Discuss the work done by a pitcher throwing a...Ch. 7 - Prob. 7CQCh. 7 - Prob. 8CQCh. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 11CQCh. 7 - Prob. 12CQCh. 7 - Prob. 13CQCh. 7 - Cite two examples in which a force is exerted on...Ch. 7 - A shopper in a supermarket pushes a cart with a...Ch. 7 - Prob. 2PCh. 7 - In 1990, Walter Arfeuille of Belgium lifted a...Ch. 7 - The record number of boat lifts, including the...Ch. 7 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 7 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 7 - Prob. 7PCh. 7 - Vector A has a magnitude of 5.00 units, and vector...Ch. 7 - Prob. 9PCh. 7 - Find the scalar product of the vectors in Figure...Ch. 7 - Prob. 11PCh. 7 - Using the definition of the scalar product, find...Ch. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - A particle is subject to a force Fx that varies...Ch. 7 - In a control system, an accelerometer consists of...Ch. 7 - When a 4.00-kg object is hung vertically on a...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - A small particle of mass m is pulled to the top of...Ch. 7 - The force acting on a particle is Fx = (8x 16),...Ch. 7 - When different loads hang on a spring, the spring...Ch. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Review. The graph in Figure P7.20 specifies a...Ch. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 7 - A 4.00-kg particle is subject to a net force that...Ch. 7 - A 2 100-kg pile driver is used to drive a steel...Ch. 7 - Review. In an electron microscope, there is an...Ch. 7 - Review. You can think of the workkinetic energy...Ch. 7 - Prob. 38PCh. 7 - Review. A 5.75-kg object passes through the origin...Ch. 7 - A 1 000-kg roller coaster car is initially at the...Ch. 7 - A 0.20-kg stone is held 1.3 m above the top edge...Ch. 7 - Prob. 42PCh. 7 - A 4.00-kg particle moves from the origin to...Ch. 7 - Prob. 44PCh. 7 - A force acting on a particle moving in the xy...Ch. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - For the potential energy curve shown in Figure...Ch. 7 - A right circular cone can theoretically be...Ch. 7 - The potential energy function for a system of...Ch. 7 - Prob. 55APCh. 7 - A particle moves along the xaxis from x = 12.8 m...Ch. 7 - Prob. 57APCh. 7 - Prob. 58APCh. 7 - Prob. 59APCh. 7 - Why is the following situation impossible? In a...Ch. 7 - Prob. 61APCh. 7 - Prob. 62APCh. 7 - An inclined plane of angle = 20.0 has a spring of...Ch. 7 - Prob. 64APCh. 7 - Prob. 65APCh. 7 - A particle of mass m = 1.18 kg is attached between...Ch. 7 - Prob. 67CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY