To define combustion reaction with the chemical product, give two example of balance chemical equation for combustion reactions. Concept Introduction: The most common driving forces which create product in chemical reactions are as follows: Formation of a solid. Formation of water. Transfer of electrons. Formation of gas. Oxidation-reduction reaction is known as redox reaction. In these types of reaction one reactant is oxidized and another is reduced. Oxidation: Oxidation is a process in which either 1 or all following changes occurs: 1. Gaining of oxygen atoms. 2. Increasing oxidation number. 3. Loss of hydrogen atom. 4. Loss of electrons. Reduction: Reduction is a process in which either 1 or all following changes occurs: 1. Loss of oxygen atoms. 2. Decreasing oxidation number. 3. Gaining of hydrogen atom. 4. Gaining of electrons. Combustion is a reaction in which hydrocarbon or organic compounds are burn in presence of air which produces water and carbon dioxide with energy. It is an exothermic reaction. In this reaction, carbon is oxidized by addition of oxygen to carbon dioxide. For example the combustion reaction of ethane is following: 2 C 2 H 6 ( g ) + 7 O 2 ( g ) → Δ 4 C O 2 ( g ) + 6 H 2 O ( g ) Reactants Products The general reaction of combustion as follows: Organic compound + O 2 ( g ) → Δ C O 2 ( g ) + H 2 O ( l ) + energy .
To define combustion reaction with the chemical product, give two example of balance chemical equation for combustion reactions. Concept Introduction: The most common driving forces which create product in chemical reactions are as follows: Formation of a solid. Formation of water. Transfer of electrons. Formation of gas. Oxidation-reduction reaction is known as redox reaction. In these types of reaction one reactant is oxidized and another is reduced. Oxidation: Oxidation is a process in which either 1 or all following changes occurs: 1. Gaining of oxygen atoms. 2. Increasing oxidation number. 3. Loss of hydrogen atom. 4. Loss of electrons. Reduction: Reduction is a process in which either 1 or all following changes occurs: 1. Loss of oxygen atoms. 2. Decreasing oxidation number. 3. Gaining of hydrogen atom. 4. Gaining of electrons. Combustion is a reaction in which hydrocarbon or organic compounds are burn in presence of air which produces water and carbon dioxide with energy. It is an exothermic reaction. In this reaction, carbon is oxidized by addition of oxygen to carbon dioxide. For example the combustion reaction of ethane is following: 2 C 2 H 6 ( g ) + 7 O 2 ( g ) → Δ 4 C O 2 ( g ) + 6 H 2 O ( g ) Reactants Products The general reaction of combustion as follows: Organic compound + O 2 ( g ) → Δ C O 2 ( g ) + H 2 O ( l ) + energy .
Solution Summary: The author defines combustion reaction with the chemical product by giving two examples of balance chemical equation for combustion reactions.
Definition Definition Chemical reactions involving both oxidation and reduction processes. During a redox reaction, electron transfer takes place in such a way that one chemical compound gets reduced and the other gets oxidized.
Chapter 7, Problem 55QAP
Interpretation Introduction
Interpretation:
To define combustion reaction with the chemical product, give two example of balance chemical equation for combustion reactions.
Concept Introduction:
The most common driving forces which create product in chemical reactions are as follows:
Formation of a solid.
Formation of water.
Transfer of electrons.
Formation of gas.
Oxidation-reduction reaction is known as redox reaction. In these types of reaction one reactant is oxidized and another is reduced.
Oxidation: Oxidation is a process in which either 1 or all following changes occurs:
1. Gaining of oxygen atoms.
2. Increasing oxidation number.
3. Loss of hydrogen atom.
4. Loss of electrons.
Reduction: Reduction is a process in which either 1 or all following changes occurs:
1. Loss of oxygen atoms.
2. Decreasing oxidation number.
3. Gaining of hydrogen atom.
4. Gaining of electrons.
Combustion is a reaction in which hydrocarbon or organic compounds are burn in presence of air which produces water and carbon dioxide with energy. It is an exothermic reaction. In this reaction, carbon is oxidized by addition of oxygen to carbon dioxide.
For example the combustion reaction of ethane is following:
Unshared, or lone, electron pairs play an important role in determining the chemical and physical properties of organic compounds.
Thus, it is important to know which atoms carry unshared pairs.
Use the structural formulas below to determine the number of unshared pairs at each designated atom.
Be sure your answers are consistent with the formal charges on the formulas.
CH.
H₂
fo
H2
H
The number of unshared pairs at atom a is
The number of unshared pairs at atom b is
The number of unshared pairs at atom c is
HC
HC
HC
CH
The number of unshared pairs at atom a is
The number of unshared pairs at atom b is
The number of unshared pairs at atom c is
Draw curved arrows for the following reaction step.
Arrow-pushing Instructions
CH3
CH3 H
H-O-H
+/
H3C-C+
H3C-C-0:
CH3
CH3 H