EBK PRACTICAL MANAGEMENT SCIENCE
5th Edition
ISBN: 9780100655065
Author: ALBRIGHT
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 52P
Summary Introduction
To determine: The number of patients served every day that minimizes the cost of running the hospital and the change of optimal solution as the capacity increases.
Non-linear programming (NLP):
Non-linear programming (NLP) is used in complex optimization problems where the objectives or constraints or sometimes both are non-linear functions of the decision variables. A model can be termed as non-linear for more than one reason.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The cost per day of running a hospital is 200,000.002x2 dollars, where x patients served per day. What sizehospital minimizes the per-patient cost of running thehospital?
. A group of students organizes a bake sale in which they sell hundreds of cookies at $1per piece. They set up a table on campus and wait for students to come and purchasetheir cookies. Consider the following variables in this bake sale operation:1. Size of the cookies2. Weather conditions on campus3. Organization of the table4. Number of cookies sold5. Competition from other fund-raisers coinciding on campus6. Amount of advertising and shouting of the students at the bake sale table7. Number of students on campus that dayWhich of these variables is an output variable?a. 3b. 4c. 5d. None of the above
1) An operator is used for loading and unloading of parts to automated machines. Loading time is 1 minute; unloading time is 2 minutes, machining time is 30 minutes, Operator travel time between the machines including the inspection time is 4 minutes. Cost of operator is C₁=40 TL/Hour, cost of a machine is C₂-200 TL/Hour. What is the cost per unit of production if optimum number of machines is assigned to the operator? (Note: Times are given in minutes and costs are per hour)
a) 231 TL/unit
b) 6930 TL/unit
c) 115.5 TL/unit
d) 240 TL/unit
e) 132 TL/unit
2) An operator is used for loading and unloading of parts to automated machines. Loading time is 1 minute; unloading time is 2 minutes, machining time is 30 minutes; Operator travel time between the machines including the inspection time is 4 minutes. Cost of operator is C1=40 TL/Hour; cost of a machine is C₂=200 TL/Hour. How many machines (integer number) should be assigned to the operator so that the total operator and machine costs…
Chapter 7 Solutions
EBK PRACTICAL MANAGEMENT SCIENCE
Ch. 7.3 - Prob. 1PCh. 7.3 - Prob. 2PCh. 7.3 - Pricing Decisions at Madison The Madison Company...Ch. 7.3 - Prob. 4PCh. 7.3 - Prob. 5PCh. 7.3 - Prob. 6PCh. 7.3 - Prob. 7PCh. 7.3 - Prob. 8PCh. 7.3 - Prob. 9PCh. 7.3 - Prob. 10P
Ch. 7.3 - Prob. 11PCh. 7.3 - Prob. 12PCh. 7.3 - Prob. 13PCh. 7.3 - PRICING SUITS AT SULLIVANS Sullivans is a retailer...Ch. 7.3 - Prob. 15PCh. 7.4 - Prob. 16PCh. 7.4 - Prob. 17PCh. 7.4 - Prob. 18PCh. 7.4 - Prob. 19PCh. 7.4 - Prob. 20PCh. 7.4 - Prob. 21PCh. 7.4 - Prob. 22PCh. 7.4 - Prob. 23PCh. 7.5 - Prob. 24PCh. 7.5 - Prob. 25PCh. 7.5 - Prob. 26PCh. 7.5 - Prob. 27PCh. 7.6 - Prob. 28PCh. 7.6 - Prob. 29PCh. 7.6 - Prob. 30PCh. 7.6 - Prob. 31PCh. 7.6 - The method for rating teams in Example 7.8 is...Ch. 7.7 - Prob. 35PCh. 7.7 - Prob. 36PCh. 7.7 - Prob. 37PCh. 7.7 - The stocks in Example 7.9 are all positively...Ch. 7.7 - Prob. 39PCh. 7.7 - Prob. 40PCh. 7.7 - Prob. 41PCh. 7.7 - Prob. 42PCh. 7.8 - Given the data in the file Stock Beta.xlsx,...Ch. 7.8 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - Another way to derive a demand function is to...Ch. 7 - Prob. 48PCh. 7 - If a monopolist produces q units, she can charge...Ch. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 56PCh. 7 - A beer company has divided Bloomington into two...Ch. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Prob. 68PCh. 7 - Prob. 69PCh. 7 - Prob. 70PCh. 7 - Based on Grossman and Hart (1983). A salesperson...Ch. 7 - Prob. 73PCh. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - Prob. 79PCh. 7 - Prob. 80PCh. 7 - Prob. 81PCh. 7 - Prob. 82PCh. 7 - Prob. 83PCh. 7 - Prob. 84PCh. 7 - Prob. 85PCh. 7 - Prob. 86PCh. 7 - Prob. 1.1CCh. 7 - Prob. 1.2CCh. 7 - Prob. 1.3CCh. 7 - Prob. 1.4C
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- In this version of dice blackjack, you toss a single die repeatedly and add up the sum of your dice tosses. Your goal is to come as close as possible to a total of 7 without going over. You may stop at any time. If your total is 8 or more, you lose. If your total is 7 or less, the house then tosses the die repeatedly. The house stops as soon as its total is 4 or more. If the house totals 8 or more, you win. Otherwise, the higher total wins. If there is a tie, the house wins. Consider the following strategies: Keep tossing until your total is 3 or more. Keep tossing until your total is 4 or more. Keep tossing until your total is 5 or more. Keep tossing until your total is 6 or more. Keep tossing until your total is 7 or more. For example, suppose you keep tossing until your total is 4 or more. Here are some examples of how the game might go: You toss a 2 and then a 3 and stop for total of 5. The house tosses a 3 and then a 2. You lose because a tie goes to the house. You toss a 3 and then a 6. You lose. You toss a 6 and stop. The house tosses a 3 and then a 2. You win. You toss a 3 and then a 4 for total of 7. The house tosses a 3 and then a 5. You win. Note that only 4 tosses need to be generated for the house, but more tosses might need to be generated for you, depending on your strategy. Develop a simulation and run it for at least 1000 iterations for each of the strategies listed previously. For each strategy, what are the two values so that you are 95% sure that your probability of winning is between these two values? Which of the five strategies appears to be best?arrow_forwardThe game of Chuck-a-Luck is played as follows: You pick a number between 1 and 6 and toss three dice. If your number does not appear, you lose 1. If your number appears x times, you win x. On the average, use simulation to find the average amount of money you will win or lose on each play of the game.arrow_forwardYou now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forward
- You now have 5000. You will toss a fair coin four times. Before each toss you can bet any amount of your money (including none) on the outcome of the toss. If heads comes up, you win the amount you bet. If tails comes up, you lose the amount you bet. Your goal is to reach 15,000. It turns out that you can maximize your chance of reaching 15,000 by betting either the money you have on hand or 15,000 minus the money you have on hand, whichever is smaller. Use simulation to estimate the probability that you will reach your goal with this betting strategy.arrow_forwardAssume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.arrow_forwardThe Decision Sciences Department is trying todetermine whether to rent a slow or a fast copier. Thedepartment believes that an employee’s time is worth$15 per hour. The slow copier rents for $4 per hour,and it takes an employee an average of 10 minutes tocomplete copying. The fast copier rents for $15 per hour,and it takes an employee an average of six minutes tocomplete copying. On average, four employees per hourneed to use the copying machine. (Assume the copyingtimes and interarrival times to the copying machineare exponentially distributed.) Which machine shouldthe department rent to minimize expected total cost perhour?arrow_forward
- Write a program that asks the user for an angle, entered in degrees. The program should then display the sine, cosine, and tangent of the angle. (Use the sin, cos, and tan library functions to determine these values.) You must convert the angle into radians (angle * 3.14/180)arrow_forward(Physics: acceleration) Average acceleration is defined as the change of velocity divided by the time taken to make the change, as shown in the following formula: a = (v1 - v0) / t Here, v0 is the starting velocity in meters/second, v1 is the ending velocity in meters/second, and t is the time span in seconds. Assume v0 is 5.6, v1 is 10.5, and t is 0.5, and write the code to display the average acceleration. If you get a logical or runtime error, please refer https://liangpy.pearsoncmg.com/faq.html.arrow_forwarda. Which of the following best describes the meaning of the equation P(25) = 200? 1. When 200 calculators are sold, the profit is $25. II. When 200 calculators are sold, the profit is increasing at a rate of $25 per additional calculator III. When 25 calculators are sold, the profit is $200. IV. When 25 calculators are sold, the profit is increasing at a rate of $200 per additional calculatoarrow_forward
- do fastarrow_forwardThe Decision Sciences Department is trying todetermine whether to rent a slow or a fast copier. Thedepartment believes that an employee’s time is worth $15per hour. The slow copier rents for $4 per hour and it takesan employee an average of 10 minutes to complete copying(exponentially distributed). The fast copier rents for $15 perhour and it takes an employee an average of 6 minutes tocomplete copying. An average of 4 employees per hour needto use the copying machine (interarrival times areexponential). Which machine should the department rent?arrow_forwardMaximize p = 7x + 6y + 3z subject to x + y + z ≤ 150 x + y + z ≥ 100 x ≥ 0, y ≥ 0, z ≥ 0. p= (x, y, z)=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,