EBK STUDY GUIDE/SOLUTIONS MANUAL FOR OR
EBK STUDY GUIDE/SOLUTIONS MANUAL FOR OR
8th Edition
ISBN: 9781319255572
Author: SCHORE
Publisher: VST
Question
Book Icon
Chapter 7, Problem 50P

(a)

Interpretation Introduction

Interpretation: The mistake in the mechanism of indicated reaction should be pointed out and correction should be proposed.

  EBK STUDY GUIDE/SOLUTIONS MANUAL FOR OR, Chapter 7, Problem 50P , additional homework tip  1

Concept introduction:Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene.

Unimolecular substitution or SN1 proceeds via a two-step mechanism. The first slow step that determines the rate is the removal of the leaving group from the substrate haloalkane and generates a carbocation. Since the rate is only governed by substrate alone and no other nucleophile or solvent it is termed as a unimolecular substitution. The final step is the attack of the nucleophile on carbocation generated and the formation of racemic products.

A general SN1 reaction mechanistic pathway is illustrated below:

  EBK STUDY GUIDE/SOLUTIONS MANUAL FOR OR, Chapter 7, Problem 50P , additional homework tip  2

(b)

Interpretation Introduction

Interpretation: The mistake in the mechanism of indicated reaction should be pointed out and correction should be proposed.

  EBK STUDY GUIDE/SOLUTIONS MANUAL FOR OR, Chapter 7, Problem 50P , additional homework tip  3

Concept introduction:Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene.

Unimolecular substitution or SN1 proceeds via a two-step mechanism. The first slow step that determines the rate is the removal of the leaving group from the substrate haloalkane and generates a carbocation. Since the rate is only governed by substrate alone and no other nucleophile or solvent it is termed as a unimolecular substitution. The final step is the attack of the nucleophile on carbocation generated and the formation of racemic products.

A general SN1 reaction mechanistic pathway is illustrated below:

  EBK STUDY GUIDE/SOLUTIONS MANUAL FOR OR, Chapter 7, Problem 50P , additional homework tip  4

(c)

Interpretation Introduction

Interpretation: The mistake in the mechanism of indicated reaction should be pointed out and correction should be proposed.

  EBK STUDY GUIDE/SOLUTIONS MANUAL FOR OR, Chapter 7, Problem 50P , additional homework tip  5

Concept introduction: Carbocation formation is relatively slower than acid-base reactions. Carbocations generated from alkyl halides have two fates; they can be either trapped by nucleophiles to give substitution product or may deprotonate to yield a small amount of alkene.

Unimolecular substitution or SN1 proceeds via a two-step mechanism. The first slow step that determines the rate is the removal of the leaving group from the substrate haloalkane and generates a carbocation. Since the rate is only governed by substrate alone and no other nucleophile or solvent it is termed as anunimolecular substitution. The final step is the attack of the nucleophile on carbocation generated and the formation of racemic products.

A general SN1 reaction mechanistic pathway is illustrated below:

  EBK STUDY GUIDE/SOLUTIONS MANUAL FOR OR, Chapter 7, Problem 50P , additional homework tip  6

Blurred answer
Students have asked these similar questions
-AG|F=2E|V 3. Before proceeding with this problem you may want to glance at p. 466 of your textbook where various oxo-phosphorus derivatives and their oxidation states are summarized. Shown below are Latimer diagrams for phosphorus at pH values at 0 and 14: Acidic solution -0.93 +0.38 -0.51 -0.06 H3PO4 →H4P206 H3PO3 H3PO2 → P→ PH3 -0.28 -0.50 → -0.50 Basic solution 3-1.12 -1.57 -2.05 -0.89 PO HPO →→H2PO2 P PH3 -1.73 a) Under acidic conditions, H3PO4 can be reduced into H3PO3 directly (-0.28V), or via the formation and reduction of H4P2O6 (-0.93/+0.38V). Calculate the values of AG's for both processes; comment. (3 points) 0.5 PH, 0.0 -0.5- 2 3 9 3 -1.5 -2.0 Pa H,PO H,PO H,PO -3 -1 0 2 4 Oxidation state, N 2 b) Frost diagram for phosphorus under acidic conditions is shown. Identify possible disproportionation and comproportionation processes; write out chemical equations describing them. (2 points) c) Elemental phosphorus tends to disproportionate under basic conditions. Use data in…
These two reactions appear to start with the same starting materials but result in different products.  How do the chemicals know which product to form?  Are both products formed, or is there some information missing that will direct them a particular way?
What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 1 2 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure. 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Priva ×
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305580350
    Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
    Publisher:Cengage Learning
    Text book image
    Organic Chemistry
    Chemistry
    ISBN:9781305080485
    Author:John E. McMurry
    Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning