21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 45QP
(a)
To determine
The mass of the planet.
(b)
To determine
The radius of the planet.
(c)
To determine
The volume of the planet detected by the COROT -11b.
(d)
To determine
The density of the planet compares this with density of water and finds that the planet is rocky or gaseous.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You decide to go on an interstellar mission to explore some of the newly discovered extrasolar
planets orbiting the star ROTOR. Your spacecraft arrives in the new system, in which there are
five planets. ROTOR is identical to the Sun (in terms of its size, mass, age and composition). From
your observations of these planets, you collect the following data:
Density Average Distance
from star (AU]
Planet
Mass
Radius
Albedo
Temp.
[C]
Surf. Press.
MOI
Rotation
[Earth = 1]
(Earth = 1] [g/cm³]
[Atm.]
Period (Hours]
Factor
SIEVER
EUGENIA
4.0
0.001
2.0
0.1
5.0
1.0
0.3
20
0.8
N/A
3.0
0.2
N/A
0.3
0.4
0.35
20
10
500
1000
5.0
4.0
0.5
0.8
0.4
0.7
-50
MARLENE
CRILE
1.0
1.0
3.0
8.0
1,5
0.0
0.50
0.50
0.25
150
0.4
JANUS
100
12
0.1
10
-80
0.2
200
Figure 1:
А
Rotor
850
890
900
Wavelength (nm)
A
Sun
В
C
860
900
910
Wavelength (nm)
2414
a as
217%
ab
(See #4 for Earth mass and radus
5. A satellite has an orbital radius 100 km above the Earth's surface.
a. What is the speed of the satellite?
b. How many minutes does it take the sātellite to complete one orbit?
Imagine that astronomers have just discovered a planet orbiting another star (other than the Sun), and they have reported the mass of the planet as 4.2 Jupiter-masses. Explain in a few words what this means.
Chapter 7 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 7.1 - Prob. 7.1CYUCh. 7.2 - Prob. 7.2CYUCh. 7.3 - Prob. 7.3CYUCh. 7.4 - Prob. 7.4CYUCh. 7.5 - Prob. 7.5CYUCh. 7 - Prob. 1QPCh. 7 - Prob. 2QPCh. 7 - Prob. 3QPCh. 7 - Prob. 4QPCh. 7 - Prob. 5QP
Ch. 7 - Prob. 6QPCh. 7 - Prob. 7QPCh. 7 - Prob. 8QPCh. 7 - Prob. 9QPCh. 7 - Prob. 10QPCh. 7 - Prob. 11QPCh. 7 - Prob. 12QPCh. 7 - Prob. 13QPCh. 7 - Prob. 14QPCh. 7 - Prob. 15QPCh. 7 - Prob. 16QPCh. 7 - Prob. 17QPCh. 7 - Prob. 18QPCh. 7 - Prob. 19QPCh. 7 - Prob. 20QPCh. 7 - Prob. 21QPCh. 7 - Prob. 22QPCh. 7 - Prob. 23QPCh. 7 - Prob. 24QPCh. 7 - Prob. 25QPCh. 7 - Prob. 26QPCh. 7 - Prob. 27QPCh. 7 - Prob. 28QPCh. 7 - Prob. 29QPCh. 7 - Prob. 30QPCh. 7 - Prob. 31QPCh. 7 - Prob. 32QPCh. 7 - Prob. 33QPCh. 7 - Prob. 34QPCh. 7 - Prob. 35QPCh. 7 - Prob. 36QPCh. 7 - Prob. 37QPCh. 7 - Prob. 38QPCh. 7 - Prob. 39QPCh. 7 - Prob. 40QPCh. 7 - Prob. 41QPCh. 7 - Prob. 42QPCh. 7 - Prob. 43QPCh. 7 - Prob. 44QPCh. 7 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 19 A planet is detected via the Doppler technique. The velocity change of the star is a measure of A The planet's size and density. B C D E The planet's mass and orbital distance. The planet's orbital period and eccentricity. The planet's mass and composition. The planet's size and orbital distance.arrow_forwarda. What is a repeat ground-track orbit? b. Explain why repeat ground-track and Sun-synchronous orbits are typically used for Earth observation missions. = c. The constraint for a Sun-synchronous and repeat ground-track orbit is given by T 86, 400, where T is the orbital period in seconds, m the number of days and k the number of revolutions. Explain why this is, in fact, a constraint on the semi-major axis of the orbit. marrow_forward1. Suppose you have an Oort cloud comet on an orbit with pericenter distance 10,000 AU, and apocenter distance 20,000 AU. a. What are the semi-major axis and eccentricity of the orbit? b. What are the specific energy (energy per unit mass), and specific angular momentum (angular momentum per unit mass) of the comet? c. How fast is the comet moving at apocenter (relative to the Sun)?arrow_forward
- helpp plzarrow_forward2arrow_forward(a) One of the moons of Jupiter, named Io, has an orbital radius of 4.22 108 m and a period of 1.77 days. Assuming the orbit is circular, calculate the mass of Jupiter, (b) The largest moon of Jupiter, named Ganymede, has an orbital radius of 1.07 109 m and a period of 7.16 days. Calculate the mass of Jupiter from this data, (c) Are your results to parts (a) and (b) consistent? Explain.arrow_forward
- Neptune has a mass of 1.0 × 1026 kg and is 4.5 × 109 km from the Sun with an orbital period of 165 years. Planetesimals in the outer primordial solar system 4.5 billion years ago coalesced into Neptune over hundreds of millions of years. If the primordial disk that evolved into our present day solar system had a radius of 1011 km and if the matter that made up these planetesimals that later became Neptune was spread out evenly on the edges of it, what was the orbital period of the outer edges of the primordial disk?arrow_forwardPlease answer the question and subquestions entirely. This is one single question. According to the official guideline, I can ask two subquestions! Thank you! 1) The radius of Planet Z is 3 times the radius of the Earth. It has the same density as the Earth. What is the gravitational acceleration at the surface of the planet? 29 m/s2 88 m/s2 270 m/s2 3.3 m/s2 a) Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit. 1.8 2.8 3.4 4.2 b) The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars? 9.8 m/s2 2.0 m/s2 3.9 m/s2 4.9 m/s2 none of thesearrow_forwardThe mass of the planet is approximately 74.8 times the mass of Jupiter. Calculate the average density of the planet. Give your answer in grams per cubic centimeter.arrow_forward
- Gravitation - Energy with Orbits 7. What is the total energy needed, or output, to bring a 5000kg satellite from infinitely far away into a stable orbiting pattern 3.4x108m from the center of the Earth?arrow_forwardPlease help mearrow_forwardApproximately what is the Schwarzchild radius of the planet Jupiter? 3 m 3 сm 3 mm Impossible to calculate 3 kmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY