21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
6th Edition
ISBN: 9780393874921
Author: PALEN
Publisher: Norton, W. W. & Company, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 34QP
To determine
The ratio of Venus’s spin total
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Uranus has a mass of 8.68 x 1025 kg and a radius of 2.56 x 10 m. Assume it is a uniform solid sphere. The distance of Uranus from the Sun is 2.87 x 10¹2 m. (Assume Uranus completes a single
rotation in 17.3 hours and orbits the Sun once every 3.08 x 104 Earth days.)
(a) What is the rotational kinetic energy of Uranus on its axis?
J
(b) What is the rotational kinetic energy of Uranus in its orbit around the Sun?
J
Titan completes one orbit about Saturn in 15.9 days and the average Saturn-Titan distance is 1.22 x 10° m.
Calculate the angular speed o of Titan as it orbits Saturn.
rad/s
=
(a)What is the period of rotation of Neptune in seconds? (The period of rotation of Neptune in hours is 16.1 hr.)
(b)What is the angular velocity (in rad/s) of Neptune? (Enter the magnitude.)
(c)Given that Neptune has a radius of 2.5 ✕ 107 m at its equator, what is the linear velocity (in m/s) at Neptune's surface? (Enter the magnitude of the linear velocity at the equator.)
Chapter 7 Solutions
21ST CENT.ASTRONOMY(LL)W/CODE WKBK PKG.
Ch. 7.1 - Prob. 7.1CYUCh. 7.2 - Prob. 7.2CYUCh. 7.3 - Prob. 7.3CYUCh. 7.4 - Prob. 7.4CYUCh. 7.5 - Prob. 7.5CYUCh. 7 - Prob. 1QPCh. 7 - Prob. 2QPCh. 7 - Prob. 3QPCh. 7 - Prob. 4QPCh. 7 - Prob. 5QP
Ch. 7 - Prob. 6QPCh. 7 - Prob. 7QPCh. 7 - Prob. 8QPCh. 7 - Prob. 9QPCh. 7 - Prob. 10QPCh. 7 - Prob. 11QPCh. 7 - Prob. 12QPCh. 7 - Prob. 13QPCh. 7 - Prob. 14QPCh. 7 - Prob. 15QPCh. 7 - Prob. 16QPCh. 7 - Prob. 17QPCh. 7 - Prob. 18QPCh. 7 - Prob. 19QPCh. 7 - Prob. 20QPCh. 7 - Prob. 21QPCh. 7 - Prob. 22QPCh. 7 - Prob. 23QPCh. 7 - Prob. 24QPCh. 7 - Prob. 25QPCh. 7 - Prob. 26QPCh. 7 - Prob. 27QPCh. 7 - Prob. 28QPCh. 7 - Prob. 29QPCh. 7 - Prob. 30QPCh. 7 - Prob. 31QPCh. 7 - Prob. 32QPCh. 7 - Prob. 33QPCh. 7 - Prob. 34QPCh. 7 - Prob. 35QPCh. 7 - Prob. 36QPCh. 7 - Prob. 37QPCh. 7 - Prob. 38QPCh. 7 - Prob. 39QPCh. 7 - Prob. 40QPCh. 7 - Prob. 41QPCh. 7 - Prob. 42QPCh. 7 - Prob. 43QPCh. 7 - Prob. 44QPCh. 7 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Model the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardA particle of mass m moves along a straight line with constant velocity v0 in the x direction, a distance b from the x axis (Fig. P13.10). (a) Does the particle possess any angular momentum about the origin? (b) Explain why the amount of its angular momentum should change or should stay constant. (c) Show that Keplers second law is satisfied by showing that the two shaded triangles in the figure have the same area when . Figure P13.10arrow_forwardSaturns ring system forms a relatively thin, circular disk in the equatorial plane of the planet. The inner radius of the ring system is approximately 92,000 km from the center of the planet, and the outer edge is about 137,000 km from the center of the planet. The mass of Saturn itself is 5.68 1026 kg. a. What is the period of a particle in the outer edge compared with the period of a particle in the inner edge? b. How long does it take a particle in the inner edge to move once around Saturn? c. While this inner-edge particle is completing one orbit abound Saturn, how far around Saturn does a particle on the outer edge move?arrow_forward
- The centrifuge at NASA Ames Research Center has a radius of 8.8 m and can produce farces on its payload of 20 gs or 20 times the force of gravity on Earth. (a) What is the angular momentum of a 20-kg payload that experiences 10 gs in the centrifuge? (b) If the driver motor was turned off in (a) and the payload lost 10 kg, what would be its new spin rate, taking into account there are no frictional forces present?arrow_forwardThe axis of Earth makes a 23.5 angle with a direction perpendicular to the plane of Earth’s orbit. As shown below, this axis precesses, making one complete rotation in 25,780 y. (a) Calculate the change in angular momentum in half this time. (b) What is the average torque producing this change in angular momentum? (c) If this torque were created by a pair of forces acting at the most effective point on the equator, what would the magnitude of each force be?arrow_forwardConsider a star orbited by two planets. Assume the star to have mass twice that of the Sun. Let planet 1 orbit with semi-major axis 10 AU, and eccentricity 0.6. Planet 2 orbits with semi-major axis 4 AU, and eccentricity 0. Assume the angular momentum vectors of the two planets to point in the same direction. Both planets have a mass of 1 Earth-mass. Let's assume these planets have a collision. a. At which point in its orbit must planet 1 be, at the time of collision? b. Assume the two planets stick together in the collision forming a planet with a mass of two earth-masses. What is the angular momentum and orbital energy (kinetic + potential) of the resulting planet? c. What are the semi-major axis and eccentricity of the orbit of the resulting planet?arrow_forward
- Suppose that the Sun runs out of nuclear fuel and suddenly collapses to form a white dwarf star. The size shrinks and became as big as earth. Assuming that there is no loss in mass and it maintained to be a solid sphere, what would be the little white dwarf star's rotation period. The present rotation of the sun is about 25 days. Earth's radius = 6.37x10^6 Sun's radius = 6.96x10^8arrow_forwardUnder some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. A star with a of mass of 2.0x1032 kg and radius 7.0x108 m is initially rotating at a rate of once every 30 days. The star collapses into a neutron star with the same mass but a new radius of 16,000 m. What is the angular speed of the star? (Give your answer in rotations per second.) Assume the star is a solid sphere: Isphere = 2/5 MR2. The Crab Nebula (shown below) formed from a nearby supernova (6000 light years away). Chinese astronomers observed the event in the year 1054 and since that time the nebula has been expanding into what it appears like today. The Crab Pulsar is a neutron star at the center of the nebula and the remains of the original supernova.arrow_forwardCalculate the angular momentum (in kg · m2/s) of Mars in its orbit around the Sun. (The mass of Mars is 6.420 ✕ 1023 kg, the orbital radius is 2.279 ✕ 108 km and the orbital period is 1.88 y.) Compare this angular momentum with the angular momentum of Mars on its axis. (The radius of Mars is 3.396 ✕ 103 km and the rotation period is 24.62 h.)arrow_forward
- Find the angular momentum (in kg · m2/s) of Saturn in its orbit around the Sun. - The mass of Saturn is 5.680 ✕ 1026 kg, the orbital radius is 1.427 ✕ 109 km and the orbital period is 29.5 y. Compare this angular momentum with the angular momentum of Saturn on its axis. - The radius of Saturn is 6.027 ✕ 104 km and the rotation period is 10.66 h.arrow_forwardA 1500-kg satellite orbits a planet in a circular orbit of radius 6.2 × 106 m from the center of the planet. What is the angular momentum, in kg m2/s, of the satellite, with respect from an axis from the center of the planet, if it completes one orbit every 1.5 × 104 s?arrow_forwardAt the end of its life, a star can collapse from the size of our Sun to the size of the Earth. The star then becomes a so-called White Dwarf. When the collapse takes place, the mass of the star stays the same. Stars generally spin around their own axis. What happens to the angular velocity of the spinning star when it collapses to become a White Dwarf ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY