University Physics Volume 1
1st Edition
ISBN: 9781630182137
Author: Samuel J Ling Jeff, Sanny, William Moebs
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 44P
Kinetic Energy
Compare the kinetic energy of a 20,000-kg truck moving at 110 km/h with that of an 80.0-kg astronaut in orbit moving at 27,500 km/h.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No chatgpt pls will upvote instant
Kirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown.
Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be
reverse). Use the sign convention that a potential drop is negative and a potential gain is positive.
E₂ = 8V
R₁₁ = 50
R₂ = 80
b
с
w
11
www
12
13
E₁ = 6V
R3 = 20
a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt).
b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt).
c) Apply Kirchoff's Junction Rule at junction b (1 pt).
d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current
around each loop. (5 pts)
I1 =
A
12 =
A
13 =
A
Direction of current around loop abef
Direction of current around loop bcde
(CW or CCW)
(CW or CCW)
No chatgpt pls will upvote
Chapter 7 Solutions
University Physics Volume 1
Ch. 7 - Check Your Understanding Can kinetic friction ever...Ch. 7 - Check Your Understanding Can Earth’s gravity ever...Ch. 7 - Check Your Understanding Find the work done by the...Ch. 7 - Check Your Understanding The spring Example 7.5 is...Ch. 7 - Check Your Understanding (a) A car and a truck...Ch. 7 - Check Your Understanding You are rowing a boat...Ch. 7 - Check Your Understanding suppose the radius of the...Ch. 7 - Check Your Understanding Estimate the power...Ch. 7 - Give an example of something we think of as work...Ch. 7 - Give an example of a situation in which there is a...
Ch. 7 - Describe a situation in 4iich a force is exerted...Ch. 7 - A body moves in a circle at constant speed. Does...Ch. 7 - Suppose you throw a ball upward and catch it when...Ch. 7 - Why is it more difficult to do sit-ups while on a...Ch. 7 - As a young man, Tarzan climbed up a vine to reach...Ch. 7 - A particle of m has a velocity of . Is its kinetic...Ch. 7 - One particle has mass mand a second particle has...Ch. 7 - A person drops a pebble of mass m1from a height h,...Ch. 7 - The person shown below does work on the lawn...Ch. 7 - Work done on a system puts energy into it. Work...Ch. 7 - Two marbles of masses mand 2mare dropped from a...Ch. 7 - Compare the work required to accelerate a car of...Ch. 7 - Suppose you are jogging at constant velocity. Are...Ch. 7 - Two forces act to double the speed of a particle,...Ch. 7 - Most electrical appliances are rated in watts....Ch. 7 - Explain, in terms of the definition of power, why...Ch. 7 - A spark of static electricity, such as that you...Ch. 7 - Does the work done in lifting an object depend on...Ch. 7 - Can the power expended by a force be negative?Ch. 7 - How can a 50-W light bulb use more energy than a...Ch. 7 - Work How much work does a supermarket checkout...Ch. 7 - A 75.0-kg person climbs stairs, gaining 2.50 m in...Ch. 7 - (a) Calculate the work done on a 1500-kg elevator...Ch. 7 - Suppose a car travels 108 km at a speed of 30.0...Ch. 7 - Calculate the work done by an 85.0-kg man who...Ch. 7 - How much work is done by the boy pulling his...Ch. 7 - A shopper pushes a grocery cart 20.0 m at constant...Ch. 7 - Suppose the ski patrol lowers a rescue sled and...Ch. 7 - A constant 20-N force pushes a small ball in the...Ch. 7 - A toy cart is pulled a distance of 6.0 m in a...Ch. 7 - A 5.0-kg box rests on a horizontal surface. The...Ch. 7 - A sled plus passenger with total mass 50 kg is...Ch. 7 - Suppose that the sled plus passenger of the...Ch. 7 - How much work does the force do on a particle as...Ch. 7 - How much work is done against the gravitationaI...Ch. 7 - It takes 500 J of work to compress a spring 10 cm....Ch. 7 - A bungee cord is essentially a very long rubber...Ch. 7 - A bungee cord exerts a nonlinear elastic force of...Ch. 7 - Engineers desire to model the magnitude of the...Ch. 7 - A particle moving in the xy -plane is subject to a...Ch. 7 - A particle moves along a curved path...Ch. 7 - Kinetic Energy Compare the kinetic energy of a...Ch. 7 - (a) How fast must a 3000-kg elephant move to have...Ch. 7 - Estimate the kinetic energy of a 90,000-ton...Ch. 7 - Calculate the kinetic energies of (a) a 2000.0-kg...Ch. 7 - A 5.0-kg body has three times the kinetic energy...Ch. 7 - An 8.0-g bullet has a speed of 800 m/s. (a) What...Ch. 7 - (a) Calculate the force needed to bring a 950-kg...Ch. 7 - A car’s bumper is designed to withstand a 4.0-km/...Ch. 7 - Boxing gloves are padded to lessen the force of a...Ch. 7 - Using energy considerations, calculate the average...Ch. 7 - A 5.0-kg box has an acceleration of 2.0m/s2 when...Ch. 7 - A constant 10-N horizontal force is applied to a...Ch. 7 - In the preceding problem, the 10-N force is...Ch. 7 - Compare the work required to stop a 100-kg crate...Ch. 7 - A wagon with its passenger sits at the top of a...Ch. 7 - An 8.0-g bullet with a speed of 800 m/s is shot in...Ch. 7 - A 2.0-kg block starts with a speed of 10 m/s at...Ch. 7 - When a 3.0-kg block is pushed against a massless...Ch. 7 - A small block of mass 200 g starts at rest at A,...Ch. 7 - A small object is placed at the top of an incline...Ch. 7 - When released, a 100-g block slides down the path...Ch. 7 - A 0.22LR-caliber bullet like that mentioned in...Ch. 7 - A sled stalls from rest at the top of a...Ch. 7 - A person in good physical condition can put out...Ch. 7 - What is the cost of operating a 3.00-W electric...Ch. 7 - A large household air conditioner may consume 15.0...Ch. 7 - (a) What is the average power consumption in watts...Ch. 7 - (a) What is the average useful power output of a...Ch. 7 - A 500-kg dragster accelerates from rest to a final...Ch. 7 - (a) How long will it take an 850-kg car with a...Ch. 7 - (a) Fir the useful power output of an elevator...Ch. 7 - (a) How long would it take a 1.50105kg airplane...Ch. 7 - Calculate the power output needed for a 950-kg car...Ch. 7 - A man of mass 80 kg runs up a flight of stairs 20...Ch. 7 - The man of the preceding problem consumes...Ch. 7 - An electron in a television tube is accelerated...Ch. 7 - Coal is lifted out of a mine a vertical distance...Ch. 7 - A girl pulls her 15-kg wagon along a flat sidewalk...Ch. 7 - A typical automobile engine has an efficiency of...Ch. 7 - When jogging at 13 km/h on a level surface, a...Ch. 7 - A cart is pulled a distance D on a flat,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which several forces act,...Ch. 7 - Consider a particle on which a force acts that...Ch. 7 - A boy pulls a 5-kg cart with a 20-N force at an...Ch. 7 - A crate of mass 200 kg is to be bright from a site...Ch. 7 - At hokey puck of mass 0.17 kg is shot across a...Ch. 7 - A horizontal force of 20 N is required to keep a...Ch. 7 - A 7.0-kg box slides along a horizontal...Ch. 7 - You are driving your car on a straight road with a...Ch. 7 - A crate is being pushed across a rough floor...Ch. 7 - Suppose a horizontal force of 20 N is required to...Ch. 7 - Grains from a hopper falls at a rate of 10 kg/s...Ch. 7 - A cyclist in a race must climb a 5 hill at a speed...Ch. 7 - Shown below is a 40-kg crate that is pushed at...Ch. 7 - The surface of the preceding problem is modified...Ch. 7 - The force F(x) varies with position, as shown...Ch. 7 - Find the work done by the same force in Example...Ch. 7 - Answer the preceding problem using polar...Ch. 7 - Find the work done by the same force in Example...Ch. 7 - Answer the preceding problem using polar...Ch. 7 - Constant power P is delivered to a car of mass m...Ch. 7 - Suppose that the air resistance a car encounters...Ch. 7 - Consider a linear spring, as in Figure 7.7(a),...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic. a. One lilac species lives o...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward
- 2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- A rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forwardDescribe the development of rational choice theory in sociology. Please includearrow_forward
- A-E pleasearrow_forwardA 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forwardA-E pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY