Online IDs As the customer base at OHaganBooks.com grows, IT manager Ruth Nabarro is thinking of introducing identity codes for all the customers, using capital letters and/or numbers. Help her answer the questions in Exercises 37–40.
O’Hagan sends Nabarro the following memo:
To: Ruth Nabarro, Software Manager
From: John O’Hagan, CEO
Subject: Customer identity Codes
I have read your proposal for the customer ID codes. However, due to our ambitious expansion plans, I would like our system software to allow for at least 500,000 customers. Please adjust your proposal accordingly.
Nabarro is determined to have a sequence of letters followed by some digits, and, for reasons too complicated to explain, there cannot be more than two letters, the letters must be different, the digits must all be different, and the first digit cannot be a zero. What is the form of the shortest code she can use to satisfy the CEO, and how many different customers can be identified?
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Finite Mathematics and Applied Calculus (MindTap Course List)
- 6 5 4 3 2 1 -5 -4-3-2-1 1 5 6 -1 23 -2 -3 -4 -5 The graph above is a transformation of the function f(x) = |x| Write an equation for the function graphed above g(x) =arrow_forwardThe graph of y x² is shown on the grid. Graph y = = (x+3)² – 1. +10+ 69 8 7 5 4 9 432 6. 7 8 9 10 1 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 -2 -3 -4 -5 -6- Clear All Draw:arrow_forwardSketch a graph of f(x) = 2(x − 2)² − 3 4 3 2 1 5 ས་ -5 -4 -3 -2 -1 1 2 3 4 -1 -2 -3 -4 -5+ Clear All Draw:arrow_forward
- 5. Find the arc length of the curve y = 3x³/2 from x = 0 to x = 4.arrow_forward-6 -5 * 10 8 6 4 2 -2 -1 -2 1 2 3 4 5 6 -6 -8 -10- The function graphed above is: Concave up on the interval(s) Concave down on the interval(s) There is an inflection point at:arrow_forward6 5 4 3 2 1 -6 -5 -3 -2 3 -1 -2 -3 -4 -5 The graph above is a transformation of the function x² Write an equation for the function graphed above g(x) =arrow_forward
- 6 5 4 3 2 1 -1 -1 -2 -3 -4 A -5 -6- The graph above shows the function f(x). The graph below shows g(x). 6 5 4 3 2 1 3 -1 -2 -3 -4 -5 -6 | g(x) is a transformation of f(x) where g(x) = Af(Bx) where: A = B =arrow_forward5+ 4 3 2 1. -B -2 -1 1 4 5 -1 -2 -3 -4 -5 Complete an equation for the function graphed above y =arrow_forward60 फं + 2 T 2 -2 -3 2 4 5 6 The graph above shows the function f(x). The graph below shows g(x). फ 3 -1 -2 2 g(x) is a transformation of f(x) where g(x) = Af(Bx) where: A = B =arrow_forward
- Let f(x) = 4√√ If g(x) is the graph of f(x) shifted up 6 units and right 3 units, write a formula for g(x) g(x)=arrow_forwardSketch a graph of f(x) = −2|x − 3| +2 5 4 3 2 1 -5 -4 -3-2 -1 -1 -2 -3 -4 -5+ Clear All Draw: -2 3 4arrow_forward3 y 7 Find the length of the curve x= + on 3 ≤ y ≤5. 21 4yarrow_forward
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,