EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 39EAP
Solar System Trends. Answer the following based on the data in Table 7.1.
- Describe the relationship between distance from the Sun and surface temperature. Explain the reason behind the general trend, as well as any notable exceptions to the trend.
- Describe in general how the columns for density, composition, and distance from the Sun support the classification of planets into the terrestrial and jovian categories, with Pluto fitting neither category.
- Describe the trend in orbital periods, and explain it in terms of Kepler’s third law.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
We need to create a scale model of the solar system (by shrinking the sun down to the size of a basketball or ~30cm). First, we will need to scale down actual solar system dimensions (planet diameters and average orbital radiuses) by converting our units. There are two blank spaces in the table below. We will effectively fill in the missing data in the next set of questions. Use the example below to help you.
Example: What is the scaled diameter of Mercury if the Sun is scaled to the size of a basketball (30 cm)?
The actual diameter of Mercury is 4879 km
The Sun's diameter is 1392000 km
If the Sun is to be reduced to the size of a basketball, then the conversion we need for this equation will be:
30cm1392000km
Here is how we run the conversion: 4879km×30cm1392000km=0.105cm or 0.11cm if we were to round our answer.
This means that if the sun in our model is the size of a basketball, Mercury is the size of a grain of sand. We can also see by looking at the table, that we would…
Impact Energy. Consider a comet about 2 kilometers across with a mass of 4 × 1012 kg. Assume that it crashes into Earth at a speed of 30,000 meters per second (about 67,000 miles per hour).
a. What is the total energy of the impact, in joules? (Hint: The kinetic energy formula tells us that the impact energy in joules will be 1 × m × v2, where 2 m is the comet’s mass in kilograms and v is its speed in meters per second.)
b. A 1-megaton nuclear explosion releases about 4 × 1015 joules of energy. How many such nuclear bombs would it take to release as much energy as the comet impact?
c. Based on your answers, comment on the degree of devastation the comet might cause.
At present there are 8 planets in the solar system. In the early models, there were only 6 planets. What is the reason behind this?
Describe a model of the modern solar system in terms of the number of planets, their arrangement and the model’s center.
Chapter 7 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 7 - Prob. 1VSCCh. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - Use the following questions to check your...Ch. 7 - What do we mean by comparative planetology? Does...Ch. 7 - What would the solar system look like to your...Ch. 7 - Briefly describe the overall layout of the solar...Ch. 7 - For each of the objects in the solar system tour...Ch. 7 - Briefly describe the patterns of motion that we...Ch. 7 - What are the basic differences between the...
Ch. 7 -
7. What do we mean by hydrogen compounds? In...Ch. 7 -
8. What are asteroids? What are comets? Describe...Ch. 7 - What kind of object in Pluto? Explain.Ch. 7 - What is the Kuiper belt? What is the Oort cloud?...Ch. 7 - Describe at least two “exceptions to the rules”...Ch. 7 - Describe and distinguish between space missions...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Does it Make Sense? Decide whether the statement...Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Choose the best answer to each of the following....Ch. 7 - Why Wait? To explore a planet, we often send first...Ch. 7 - Prob. 35EAPCh. 7 - Prob. 37EAPCh. 7 - Patterns of Motion. In one or two paragraphs,...Ch. 7 - Solar System Trends. Answer the following based on...Ch. 7 - Comparing Planetary Conditions. Use both Table 7.1...Ch. 7 - Prob. 41EAPCh. 7 - Size Comparisons. How many Earths could fit inside...Ch. 7 - Asteroid Orbit. Ceres, the largest asteroid, has...Ch. 7 - Density Classification. Calculate the density of a...Ch. 7 - Comparative Weight. Suppose you weigh 100 pounds....Ch. 7 - New Horizons Speed. On its trajectory to Pluto,...Ch. 7 - Planetary Parallax. Suppose observers at Earth’s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How do terrestrial and giant planets differ? List as many ways as you can think of.arrow_forwardDescribe the solar nebula, and outline the sequence of events within the nebula that gave rise to the planetesimals.arrow_forwardEarlier in this chapter, we modeled the solar system with Earth at a distance of about one city block from the Sun. If you were to make a model of the distances in the solar system to match your height, with the Sun at the top of your head and Pluto at your feet, which planet would be near your waist? How far down would the zone of the terrestrial planets reach?arrow_forward
- The solar nebula idea suggests that other solar systems may include livable planets, but how likely is this? A half-page synopsis of NASA's Kepler project is due this week.arrow_forwardAfter reducing the Planet Mass to 0.5, we observe the subsequent motions. How are the orbits of the Earth and Moon affected? Summarize observations and explain why. A website for the simulation shown in the image: https://phet.colorado.edu/sims/html/gravity-and-orbits/latest/gravity-and-orbits_en.htmlarrow_forwardPretend you are a NASA executive or a legislator. Design a new mission in our solar system. Pick any object in the system and decide whether you want to send an orbiter, a lander, a rover, some combination or those, a manned mission, or something else. What interests you about this object? What science questions can we answer? In basic terms, what kind of scientific instruments might you want to include on your mission? Justify your decisions with what you know about the scientific method, astronomy techniques, and the object itself from this class.arrow_forward
- O e. as a moon QUESTION 3 You observe a large, round object orbiting Uranus. How would you classify this object? O a. as a planet Ob. as a dwarf planet Oc. as an asteroid Od. as a Kuiper belt object e. as a moon QUESTION 4 What is one difference between asteroids and Kuipter Belt Objects (KBOS)? O a. asteroids are composed of rock and ice, while KBOS are composed of just rock b. asteroids orbit the Sun, while KBOS orbit Pluto C. asteroids orbit between Mars and Jupiter, while KBO's orbit near Pluto d. asteroids have very elliptical orbits, while KBOS have very circular orbits e. asteroids are small and potato-shaped, while KBOS are large and round DO000arrow_forwardConclusion(s) and evidence from investigation: 1. What is the relationship between mass and gravity? 2. How is mass and gravity relevant to the formation of the solar system? (think about the sun) 3. Describe the shape of the solar system. 4. Describe the composition (what it is made of) of the solar system. 5. Describe the revolution (orbit) of the solar system. 6. Identify an anomaly (doesn't match the rest) in the data and propose an explanation for it. 7. What were some patterns you found in the columns? List at least 2. 8. Which is the best evidence that the solar system was created from accretion? Explain why. (There may be more than 1!)arrow_forwardYou are given the following data from observations of an exoplanet: Using Kepler’s Third Law (r3 = MT2 where M is the mass of the central star) find the orbital radius in astronomical units of this planet. M = 1.5 times the mass of the sun. Remember to convert days to years using 365.25 as the length of a year in days. What is the semimajor axis of this planet in AU? - Knowing the orbital radius in both kn and AU, use the value in km to find the circumference of the orbit, then convert that to meters. (Assume the orbit is a perfect circle). - Knowing the orbital circumference and the period in days, convert the days to seconds (multiply by 86,400) and find the orbital velocity in m/s - With that orbital velocity, the radius of the orbit in meters, find the centripetal acceleration of our exoplanet - Knowing the acceleration that our planet experiences, calculate the force that the host star exerts on the planet - Knowing the force on the planet, the orbital radius, and the mass of the…arrow_forward
- What is the frost line in the solar nebula? Explain how temperature differences led to the formation of two distinct types of planets.arrow_forward1. Which of the outer planets have compositions dominated by the "ices" ingredient? Check the correct two. 2. Which of the outer planets have compositions dominated by the "gases" ingredient? Check the correct two. 3. Most of the spaceflight missions to the outer planets have been flyby missions, but two of them were orbiters. Which of these two spacecraft orbited giant planets? Check the correct two. (Hint: An orbiter might do a flyby of one planet and then go on to orbit a different planet.) 4. Jupiter's mass is how many times larger than the Earth's? Just type a number, no words or any other extra stuff. 5. Which of the outer planets has extreme seasons, with its rotational axis being tilted so much that it is practically in the plane of its orbit?arrow_forwardGiven what you've learned about the solar nebula idea, what do you believe the likelihood is of discovering livable planets in other solar systems? Learn more about this search by visiting NASA's Kepler mission and writing a half-page overview of the project.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY