21ST CENT.AST.W/WKBK+SMARTWORK >BI<
6th Edition
ISBN: 9780393415216
Author: Kay
Publisher: NORTON
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 38QP
To determine
Compare the duration of planet transits in figure 7.20, find the longest duration of the outermost planet.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In Table 2, there is a list of 15 planets, some of which are real objects discovered by the Kepler space telescope, and some are hypothetical planets. For each one, you are provided the temperature of the star that each planet orbits in degrees Kelvin (K), the distance that each planet orbits from their star in astronomical units (AUs) and the size or radius of each planet in Earth radii (RE). Since we are concerned with finding Earth-like planets, we will assume that the composition of these planets are similar to Earth's, so we will not directly look at their masses, rather their sizes (radii) along with the other characteristics. Determine which of these 15 planets meets our criteria of a planet that could possibly support Earth-like life. Use the Habitable Planet Classification Flow Chart (below) to complete Table 2. Whenever the individual value you are looking at falls within the range of values specified on the flow chart, mark the cell to the right of the value with a Y for…
Using high resolution adaptive optical techniques, observations of a nearby (9.5 pc) cool star of mass 0.2 solar masses indicate the presence of a small
rocky exoplanet in a circular orbit with a radius of 0.01 arcseconds. Using Kepler's Laws, estimate the period of the exoplanet's orbit in days.
select units A
1. Planet A has an orbital period of 12 years and radius that is 0.033 times the radius of the star. Calculate the fractional dip of the star brightness in the case that planet A is transiting. Give the answer as a number. Quote the formula you use and explain any assumptions you have to make.
2. Planet B has an orbital period of 1 year and is located closer to its star than planet A. You succeed in detecting planet B with the radial velocity technique as well! From this measurement you calculate a minimum mass of planet B to be 75% that of the Earth. (a) Since you detect the planet with both transit method and radial velocity method, what do you know about the inclination of the planetary system? (b) Given this inclination, estimate the true mass of planet B (in units of Earth mass). You do not need to do a detailed calculation, just explain the argument.
3. You also measure the radius of planet B to be the same as Earth, one Earth radius. (a) How does the density of planet B compare…
Chapter 7 Solutions
21ST CENT.AST.W/WKBK+SMARTWORK >BI<
Ch. 7.1 - Prob. 7.1CYUCh. 7.2 - Prob. 7.2CYUCh. 7.3 - Prob. 7.3CYUCh. 7.4 - Prob. 7.4CYUCh. 7.5 - Prob. 7.5CYUCh. 7 - Prob. 1QPCh. 7 - Prob. 2QPCh. 7 - Prob. 3QPCh. 7 - Prob. 4QPCh. 7 - Prob. 5QP
Ch. 7 - Prob. 6QPCh. 7 - Prob. 7QPCh. 7 - Prob. 8QPCh. 7 - Prob. 9QPCh. 7 - Prob. 10QPCh. 7 - Prob. 11QPCh. 7 - Prob. 12QPCh. 7 - Prob. 13QPCh. 7 - Prob. 14QPCh. 7 - Prob. 15QPCh. 7 - Prob. 16QPCh. 7 - Prob. 17QPCh. 7 - Prob. 18QPCh. 7 - Prob. 19QPCh. 7 - Prob. 20QPCh. 7 - Prob. 21QPCh. 7 - Prob. 22QPCh. 7 - Prob. 23QPCh. 7 - Prob. 24QPCh. 7 - Prob. 25QPCh. 7 - Prob. 26QPCh. 7 - Prob. 27QPCh. 7 - Prob. 28QPCh. 7 - Prob. 29QPCh. 7 - Prob. 30QPCh. 7 - Prob. 31QPCh. 7 - Prob. 32QPCh. 7 - Prob. 33QPCh. 7 - Prob. 34QPCh. 7 - Prob. 35QPCh. 7 - Prob. 36QPCh. 7 - Prob. 37QPCh. 7 - Prob. 38QPCh. 7 - Prob. 39QPCh. 7 - Prob. 40QPCh. 7 - Prob. 41QPCh. 7 - Prob. 42QPCh. 7 - Prob. 43QPCh. 7 - Prob. 44QPCh. 7 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Use Kepler's 3rd Law and the small angle approximation. a) An object is located in the solar system at a distance from the Sun equal to 41 AU's . What is the objects orbital period? b) An object seen in a telescope has an angular diameter equivalent to 41 (in units of arc seconds). What is its linear diameter if the object is 250 million km from you? Draw a labeled diagram of this situation.arrow_forwardplease quickly thanks !!!!arrow_forwardA certain binary system consists of two stars that have equal masses and revolve in circular orbits around a fixed point half-way between them. If the orbital velocity of each star is v=186 km/s and the orbital period of each is 11.3 days, calculate the mass M of each star. Give your answer in units of the solar mass, 1.99×1030 kg (e.g. if each planet's mass is 3.98×1030 kg, you would answer "2.00").arrow_forward
- H5. A star with mass 1.05 M has a luminosity of 4.49 × 1026 W and effective temperature of 5700 K. It dims to 4.42 × 1026 W every 1.39 Earth days due to a transiting exoplanet. The duration of the transit reveals that the exoplanet orbits at a distance of 0.0617 AU. Based on this information, calculate the radius of the planet (expressed in Jupiter radii) and the minimum inclination of its orbit to our line of sight. Follow up observations of the star in part reveal that a spectral feature with a rest wavelength of 656 nm is redshifted by 1.41×10−3 nm with the same period as the observed transit. Assuming a circular orbit what can be inferred about the planet’s mass (expressed in Jupiter masses)?arrow_forwardAn exoplanetary system has two known planets. Planet X orbits in 290 days and Planet Y orbits in 145 days. Which planet is closest to its host star? If the star has the same mass as the Sun, what is the semi-major axis of the orbits for Planets X and Y?arrow_forwardKepler’s third law says that the orbital period (in years) is proportional to the square root of the cube of the mean distance (in AU) from the Sun (Pa1.5) . For mean distances from 0.1 to 32 AU, calculate and plot a curve showing the expected Keplerian period. For each planet in our solar system, look up the mean distance from the Sun in AU and the orbital period in years and overplot these data on the theoretical Keplerian curve.arrow_forward
- Why is it so hard to see planets around other stars and so easy to see them around our own?arrow_forwardA new mystery planet is detected around our Sun. We measure its position relative to the Sun to be 2 AU at perihelion and 6 AU at aphelion. What is the semimajor axis of this planet's orbit (in AU)? With that information, what is the orbital period of that planet (in years)? If this planet has the same mass as Earth, how does the average force of gravity on the planet by the Sun compare with the average force of gravity on the Earth by the Sun? Please give a numerical ratio of the forces. (Hint: You can take the semimajor axis to represent the average position of the planets) 6:this is all one question with multiples steps. Thank youarrow_forwardA planet (in another galaxy) takes 5 000 Earth days to complete one full revolution around its own star (not the Sun). It is exactly as far away from its star as Earth is to its own Sun. Draw a FBD, then determine how many times more or less massive this star is than our sun (in other words, give a factor of mass, e.g “5x larger” or “5x smaller”)arrow_forward
- Can I get help pleasearrow_forwardQ1arrow_forwardMercury's orbit ranges from 46 to 70 million km from the Sun, while Earth orbits at about 150 million km. a. The Sun has a 30-arc-minute diameter viewed from Earth; what range of sizes does it have when viewed from Mercury? When Mercury is 46 million km from the Sun, the Sun has a diameter of When Mercury is 70 million km from the Sun, the Sun has a diameter of arc-minutes. arc-minutes. b. At Mercury's orbital extremes, how many times stronger is the Sun's radiation on Mercury than on Earth? At 46 million km, the Sun's radiation is times stronger than on Earth. At 70 million km, the Sun's radiation is times stronger than on Earth.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY