A woman places her briefcase on the backseat of her car. As she drives to work, the car negotiates an unbanked curve in the road that can be regarded as an arc of a circle of radius 62.0 m. While on the curve, the speed of the car is 15.0 m/s at the instant the briefcase starts to slide across the backseat toward the side of the car. (a) What force causes the centripetal acceleration of the briefcase when it is stationary relative to the car? Under what condition does the briefcase begin to move relative to the car? (b) What is the coefficient of static friction between the briefcase and seat surface?
A woman places her briefcase on the backseat of her car. As she drives to work, the car negotiates an unbanked curve in the road that can be regarded as an arc of a circle of radius 62.0 m. While on the curve, the speed of the car is 15.0 m/s at the instant the briefcase starts to slide across the backseat toward the side of the car. (a) What force causes the centripetal acceleration of the briefcase when it is stationary relative to the car? Under what condition does the briefcase begin to move relative to the car? (b) What is the coefficient of static friction between the briefcase and seat surface?
Solution Summary: The author explains that the force of static friction is causing the centripetal acceleration of the briefcase when it is stationary relative to the car.
A woman places her briefcase on the backseat of her car. As she drives to work, the car negotiates an unbanked curve in the road that can be regarded as an arc of a circle of radius 62.0 m. While on the curve, the speed of the car is 15.0 m/s at the instant the briefcase starts to slide across the backseat toward the side of the car. (a) What force causes the centripetal acceleration of the briefcase when it is stationary relative to the car? Under what condition does the briefcase begin to move relative to the car? (b) What is the coefficient of static friction between the briefcase and seat surface?
4
Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad,
the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec².
What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector
in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle
by observing a right triangle. (20 pts)
Ꮎ
2 m
Figure 3: Particle pushed by rod along vertical path.
4
Problem 4) A particle is being pushed up a smooth slot by a rod. At the instant when 0 = rad,
the angular speed of the arm is ė = 1 rad/sec, and the angular acceleration is = 2 rad/sec².
What is the net force acting on the 1 kg particle at this instant? Express your answer as a vector
in cylindrical coordinates. Hint: You can express the radial coordinate as a function of the angle
by observing a right triangle. (20 pts)
Ꮎ
2 m
Figure 3: Particle pushed by rod along vertical path.
please solve and answer the question correctly. Thank you!!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.