Questions 25 through 27 concern a classic figure-skating jump called the axel. A skater starts the jump moving forward as shown in Figure Q7.25, leaps into the air, and turns one-and-a-half revolutions before landing. The typical skater is in the air for about 0.5 s, and the skater's hands are located about 0.8 m from the rotation axis. Figure Q7.25 26. The skater’s arms are fully extended during the jump. What is the approximate centripetal acceleration of the skater’s hand? A. 10 m/s 2 B. 30 m/s 2 C. 300 m/s 2 D. 450 m/s 2
Questions 25 through 27 concern a classic figure-skating jump called the axel. A skater starts the jump moving forward as shown in Figure Q7.25, leaps into the air, and turns one-and-a-half revolutions before landing. The typical skater is in the air for about 0.5 s, and the skater's hands are located about 0.8 m from the rotation axis. Figure Q7.25 26. The skater’s arms are fully extended during the jump. What is the approximate centripetal acceleration of the skater’s hand? A. 10 m/s 2 B. 30 m/s 2 C. 300 m/s 2 D. 450 m/s 2
Questions 25 through 27 concern a classic figure-skating jump called the axel. A skater starts the jump moving forward as shown in Figure Q7.25, leaps into the air, and turns one-and-a-half revolutions before landing. The typical skater is in the air for about 0.5 s, and the skater's hands are located about 0.8 m from the rotation axis.
Figure Q7.25
26. The skater’s arms are fully extended during the jump. What is the approximate centripetal acceleration of the skater’s hand?
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative.
Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
[most negative
91 = +1nC
92 = +1nC
91 = -1nC
93 = +1nC
92- +1nC
93 = +1nC
-1nC
92- -1nC
93- -1nC
91= +1nC
92 = +1nC
93=-1nC
91
+1nC
92=-1nC
93=-1nC
91 = +1nC
2 = −1nC
93 = +1nC
The correct ranking cannot be determined.
Reset
Help
most positive
Part A
Find the x-component of the electric field at the origin, point O.
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz =
Η ΑΣΦ
?
N/C
Submit
Part B
Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O?
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz=
Η ΑΣΦ
?
N/C
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.