
Concept explainers
Investigate the volume capacity of a barrel of oil in galloons, cubic feet, cubic meters, and the volume capacity of a bushel of agricultural products in cubic inches, cubic feet, and cubic meters.

Answer to Problem 23P
The volume capacity of a barrel of oil in galloons, cubic feet, cubic meters is
Explanation of Solution
Volume capacity of the Barrel:
Barrel is the wooden container in the form of cylindrical shape. The wooden staves are used to make the barrel by rounding the staves using the hoops. The barrel is in curved shape and the structure is convex and bulges at the center of the barrel which is called as bilge. Such a shape is used to manufacture the barrel in order to roll it and make the roller to change the moving directions with little friction by comparing with the cylinder.
According to the U.S. standard, a barrel contains
Consider the following expression to calculate the value from gallons to cubic feet,
Consider the following expression to calculate the value from gallons to cubic meters,
Volume capacity of the Bushel:
Bushel is the US customary unit for the mass or weight which is based upon the measure of dry capacity. It is a unit of units used for measurement of agricultural products such as corn, beans, flaxseeds etc.
According to the U.S. standard, a bushel contains
Consider the following expression to calculate the value from dry gallons to cubic inches in dry capacity,
Consider the following expression to calculate the value from dry gallons to cubic feet,
Consider the following expression to calculate the value from dry gallons to cubic meters,
The volume capacity of a barrel of oil in galloons, cubic feet, cubic meters is
The barrel is the old unit to measure the volume of oil, fluid or dry barrels. It is used to measure the bulk amount of containers especially in U.S and U.K.
Bushel is the US customary unit of volume for the mass, used to measure the bulk range of mass in volume used specially in U.S and UK.
The relation in both volume units is
And
The American merchants are used to measure the products in Barrels and Bushels.
Conclusion:
Thus, the volume capacity of a barrel of oil in galloons, cubic feet, cubic meters is
Want to see more full solutions like this?
Chapter 7 Solutions
Engineering Fundamentals: An Introduction to Engineering
- A project requires 125 cubic yards of concrete sidewalk to be placed, for which 165 workhours have been budgeted. The latest weekly progress report shows that 78 cubic yards have been placed and 103 workhours have been expended to date. What is the status of the concrete placement? Significantly under budget. On budget. Significantly over budget. Status cannot be determined with information supplied.arrow_forwardRefer to exhibit #098. At what depth was water encountered?arrow_forwardWhat is the reaction moment at A for the frame shown? a. 222.1 k-ft b. 107.8 k-ft c. 20.8 k-ft d. 23.25 k-ftarrow_forward
- “When a conflict exists between the project floor plans and detailed material schedule relative to size or number, which of the following usually governs in typical order of precedence?arrow_forwardWhat are the critical activitiesarrow_forwardApproximately how many pounds of water are necessary to hydrate 100 pounds of type I Portland cement? 30 50 75 94arrow_forward
- 7:05 3.1 Trabajo en clase.pptx .III LTE 8 Trabajo en clases 3.1 C9 X 20 W8 X 21 5-15. PL¹× 12 Fy = 50 klb/plg² KL = 16 pies KL 21 pies 2 plg MC 13 × 50 PL × 12 Fy = 42 klb/plg2 Fy = 36 klb/plg² 8 plg K k MC8 × 21.4 KL = 20 piesarrow_forwardThe steel frameword below is used to support the reinforced concrete slab used for an office area above the first storey. The slab is 210 mm thick. Sketch the loading that acts along members BE and FED. Use a = 2.15 m and b = 5.25 m. Refer to the 2024 OBC live load table. The unit weight for the concrete is 24.15 kN/m3.find:Loading for member BE Loading for member FED Live and Dead Loadsarrow_forwardFor the simply supported beam below, draw both the shear force (VFD) and ending moment (BDM) diagrams. Please show all equations and free body diagrams (FBD). Note: I want a cut through each of the three sections of the beam, with all related forces calculated and shown on the VFD and BMD.Reaction Forces Shear Force DiagramMaximum Shear ForceEquation for cut 1, 2, 3 respectively.Confirmation of Reaction ForcesBending Moment DiagramMaximum Bending Momentarrow_forward
- For the structural frame below, draw the shear force (VFD) and bending moment (BMD) diagrams for each of the three members of the frame. The frame is pin connected at A, C and D and fixed at joint B.Find:VFD & BMD for segment AB VFD & BMD for segment BCVFD & BMD for segment CD Reaction Forces VFD Equations BMD EquationsFree Body Diagramsarrow_forwardDetermine the horizontal and vertical reactions at A and C for the two member frame below. Use P1 = 3.2 kN, P2 = 14.5 kN/m, L1 = 3.3 m, and L2 = 2.3 m. Free Body DiagramsTriangular Load Use of Pin Reaction Forcesarrow_forwardDetermine the reaction forces at supports A and C for the compound beam. Assume C is fixed, B is a pin, and A is a roller. Use P1 = 16 kN/m, P2 = 21 kN, L1 = 3.5 m, L2 = 1.5 m, and L3 – 1.5 m. needs:Triangular Load Use of Pin Reaction Forcesfree body diagramsarrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,

