
Concept explainers
Manganese is found as MnO2 in deep ocean deposits.
- (a) Depict the electron configuration of this element using the noble gas notation and an orbital box diagram.
- (b) Using an orbital box diagram, show the electrons beyond those of the preceding noble gas for Mn4+.
- (c) Is Mn4+ paramagnetic?
- (d) How many unpaired electrons does the Mn4+ ion have?
(a)

Interpretation:
The electronic configuration of Manganese has to be depicted using its orbital notation box and noble gas electron filling methods.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
The important there rules for electronic configuration given below:
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.
Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.
Explanation of Solution
Let us consider the orbital filling method of Manganese (Mn) element
Hence, the electronic configuration of Manganese (Mn) =
(b)

Interpretation:
The electronic configuration of Manganese ion (Mn4+) has to be depicted using its orbital notation box and noble gas electron filling methods.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
The important there rules for electronic configuration given below:
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.
Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.
Explanation of Solution
Let us consider the orbital filling method of Manganese (Mn4+) element
Than manganese (Mn) atom was oxidized to (Mn4+) ions, it lost for four electrons in outermost (4s and 3d) orbitals.
Hence, the electronic configuration of Manganese (Mn4+) =
(c)

Interpretation:
Mn4+ ion is paramagnetic or not has to be predicted.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
The important there rules for electronic configuration given below:
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.
Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.
Explanation of Solution
The manganese (Mn4+) ion has three unpaired electrons in (3d) shells. Hence this system completely obeyed for paramagnetic nature, because all unpaired electrons occupying in each single shell, so this (Mn4+) is paramagnetic.
(d)

Interpretation:
The number of unpaired electrons the Mn4+ion possess has to be predicted.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
The important there rules for electronic configuration given below:
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.
Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.
Explanation of Solution
The manganese (Mn4+) system having three unpaired electrons, see the above electronic configuration diagram.
Want to see more full solutions like this?
Chapter 7 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
- ASP please....arrow_forwardNonearrow_forwardConsider the structure of 1-bromo-2-fluoroethane. Part 1 of 2 Draw the Newman projection for the anti conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. ✡ ぬ Part 2 of 2 H H F Br H H ☑ Draw the Newman projection for the gauche conformation of 1-bromo-2-fluoroethane, viewed down the C1-C2 bond. H F Br H Harrow_forward
- Please help me answer this question. I don't understand how or where the different reagents will attach and it's mostly due to the wedge bond because I haven't seen a problem like this before. Please provide a detailed explanation and a drawing showing how it can happen and what the final product will look like.arrow_forwardWhich of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2Sarrow_forwardWhich of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forward
- Based on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forwardPLEASE HELP URGENT!arrow_forwardDraw the skeletal structure corresponding to the following IUPAC name: 7-isopropyl-3-methyldecanearrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning


